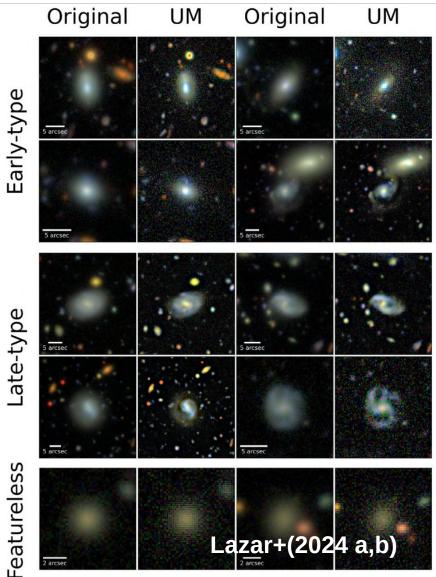
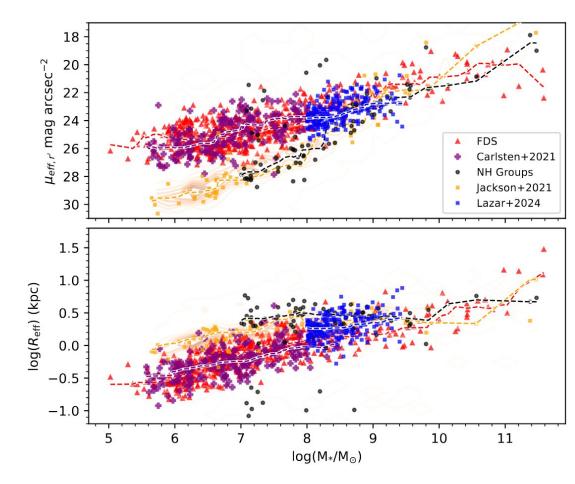
The structural diversity of simulated and observed low-mass galaxies


<u>NAM 2025</u>

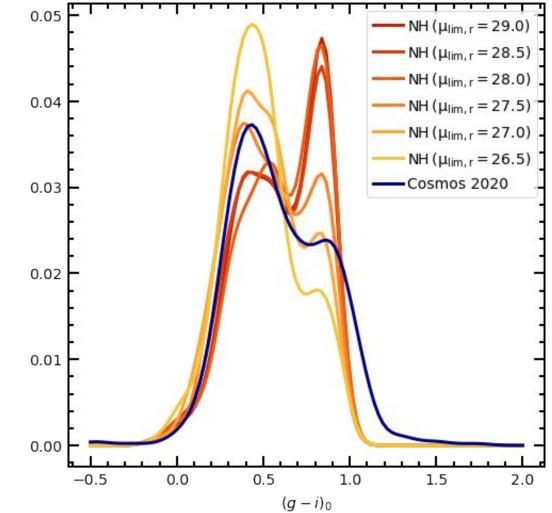
Garreth Martin*, Aaron Watkins, Yohan Dubois, Sugata Kaviraj, Duho Kim, Katarina Krajic, Ilin Lazar, Frazer Pearce, Sebastien Peirani, Christophe Pichon, Sukyoung Yi, Julien Devriendt, Adrianne Slyz

*University of Nottingham (garreth.martin@nottingham.ac.uk)

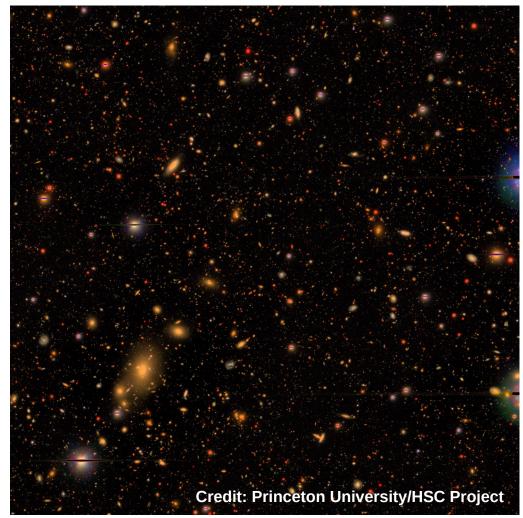

Low-mass galaxies as Laboratories for Galaxy Evolution

- Dwarfs do not appear to be solely an extension of high-mass populations
- Some morphological features present in the high-mass regime extend to dwarf galaxies
- But we also observe dwarfs with morphologies and structural properties only found in the low-mass regime (Lazar+2024a, 2024b)
- Cosmological simulations are tuned to reproduce high mass galaxy populations, but not the low mass Universe, which is observationally incomplete

Low-mass galaxies as Laboratories for Galaxy Evolution


- Dwarfs do not appear to be solely an extension of high-mass populations
- Some morphological features present in the high-mass regime extend to dwarf galaxies
- But we also observe dwarfs with morphologies and structural properties only found in the low-mass regime (Lazar+2024a, 2024b)
- Cosmological simulations are tuned to reproduce high mass galaxy populations, but not the low mass Universe, which is observationally incomplete

Watkins+2025


Low-mass galaxies as Laboratories for Galaxy Evolution

- Deep-wide imaging reveals that previous wide-area surveys (e.g. SDSS) missed many low-mass galaxies due to surface brightness limits.
 - e.g. "Ultra-diffuse galaxies" (van Dokkum+2015) highlight significant selection biases in past observations.
 - Biased towards the most star-forming objects (Kaviraj+2025)
- Dwarf galaxies are very sensitive to feedback and environmental processes due to shallow potential wells
 - Stellar feedback
 - Indication that AGN play some role (e.g. Reines+2013, Kaviraj+2019, Bichang'a+2024)
 - Interactions with environment

A New Era of Observations and Simulations

- Next-generation surveys (Rubin, Euclid, JWST) are revolutionizing our view of low-mass galaxies with unprecedented depth.
- The COSMOS field (HSC-SSP) provides one of the deepest current datasets for studying faint dwarfs (μ_i (3 σ , 10"×10") > 31 mag arcsec⁻²).
- Cosmological simulations (e.g. NewHorizon, TNG50, FIREbox) now resolve low-mass galaxies over relatively large volumes.
- Forward modelling allows direct comparison between real and simulated galaxies.

A New Era of Observations and Simulations

- Next-generation surveys (Rubin, Euclid, JWST) are revolutionizing our view of low-mass galaxies with unprecedented depth.
- The COSMOS field (HSC-SSP) provides one of the deepest current datasets for studying faint dwarfs (μ_i (3 σ , 10"×10") > 31 mag arcsec⁻²).
- Cosmological simulations (e.g. NewHorizon, TNG50, FIREbox) now resolve low-mass galaxies over relatively large volumes.
- Forward modelling allows direct comparison between real and simulated galaxies.

Simulations

	NewHorizon (Dubois+2021)	TNG50 (Nelson+2019, Pillepich+2019)	
Code	RAMSES (AMR) AREPO (moving mesh)		
Volume	Zoom-in of 20 Mpc spherical region from Horizon-AGN	50 Mpc box	
Resolution	~1.3×10⁴ M⊙ (stars), ~34 pc (spatial)	~8.5×10 ⁴ M $_{\odot}$ (stars/gas), 100–140 pc (spatial)	
Environment Coverage	Field and group (max halo ~10¹³ M⊙)	Field, group & poor clusters (~10 ¹⁴ M_{\odot})	
Star Formation	Turbulence-regulated	Schmidt law	
ISM Physics	Multiphase ISM	Idealised two-phase model	
SN Feedback	Mechanical feedback from SN Type II (Kimm & Cen 2014)	Direct heating + delayed kinetic winds (Springel & Hernquist 2003)	
Extras		MHD	

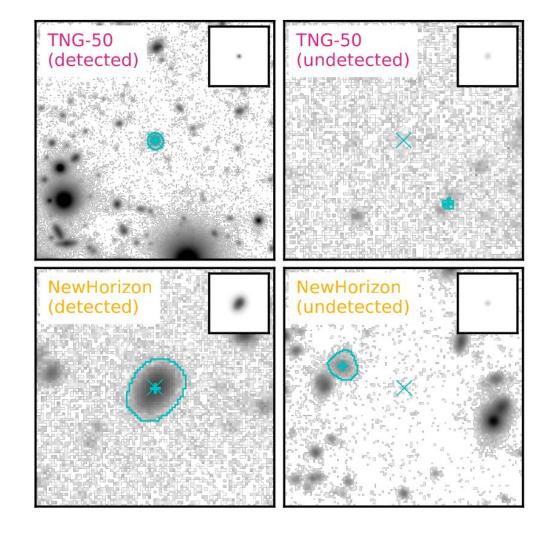
Observations

We use data from the COSMOS field, supported by deep Hyper Suprime-Cam (HSC) imaging:

• COSMOS2020 (Weaver+2021)

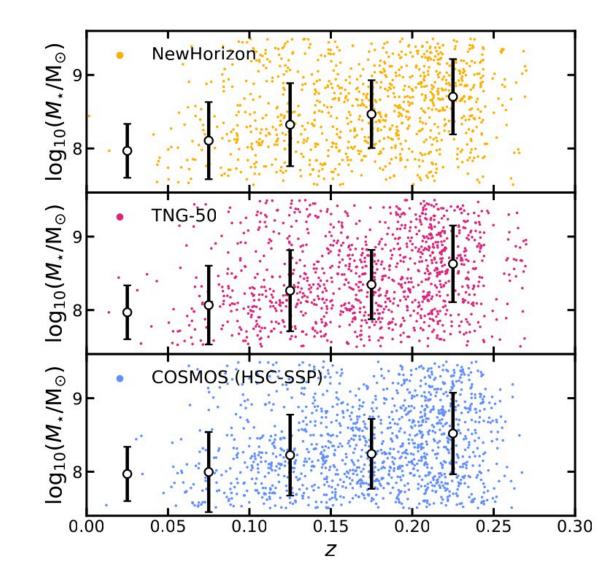
- Provides stellar masses, redshifts, and rest-frame properties via comprehensive (40band) multiwavelength photometry.
- Photometric redshifts reach <1% precision for bright sources.

• HSC-SSP Imaging (Aihara+2019)


- Deep *i*-band imaging ($\mu \approx 31 \text{ mag arcsec}^{-2}$) over the central 1.5° of COSMOS.
- We use the DR2 deepCoadd images to preserve extended flux.
- COSMOS probes relatively average environments, with a galaxy number density similar to TNG50 and NewHorizon volumes at 0.05 < z < 0.3.

Connecting Observations and Theory

- Galaxy morphology encodes key information about formation history, feedback, and environment.
- Morphological comparisons between observations and simulations help test physical prescriptions.
- In this work, we:
 - Generate realistic synthetic HSC-like images from TNG50 and NewHorizon.
 - Measure structural properties of COSMOS dwarf galaxies.
 - Compare structural diversity across observed and simulated samples.
- Our aim: to assess how well current simulations reproduce the diversity of dwarf galaxy structure, and what this reveals about feedback and ISM physics.

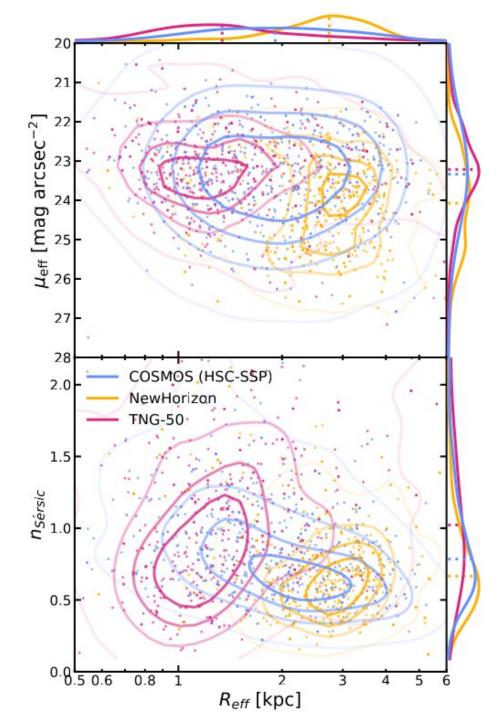

Detection, Segmentation & Sample

- Synthetic imaging:
 - Generate *i*-band flux maps from SEDs, convolved with HSC PSF (Montes+2021)
 - Match HSC pixel scale (0.168"), photometric zeropoints, and image noise characteristics
- Source Injection & Detection:
 - Synthetic galaxies injected into random, source-free regions of HSC images
 - Detections performed with PhotUtils same pipeline for real and synthetic sources
- Observed Sample Selection:
 - COSMOS2020 dwarfs with:
 - $0.05 < z < 0.25, 10^{7.5} < M^*/M_{\odot} < 10^{9.5}$
 - Final sample: 1320 observed galaxies
- Matching Simulations to Observations:
 - Simulated samples matched in mass and redshift to COSMOS
 - Non-detections become notable only for NewHorizon at $z > 0.2,\,M^*\!/M_\odot < 10^8$

Detection, Segmentation & Sample

- Synthetic imaging:
 - Generate *i*-band flux maps from SEDs, convolved with HSC PSF (Montes+2021)
 - Match HSC pixel scale (0.168"), photometric zeropoints, and image noise characteristics
- Source Injection & Detection:
 - Synthetic galaxies injected into random, source-free regions of HSC images
 - Detections performed with PhotUtils same pipeline for real and synthetic sources
- Observed Sample Selection:
 - COSMOS2020 dwarfs with:
 - 0.05 < z < 0.25, $10^{7.5}$ < M*/M_{\odot} < $10^{9.5}$
 - Final sample: 1320 observed galaxies
- Matching Simulations to Observations:
 - Simulated samples matched in mass and redshift to COSMOS
 - Non-detections become notable only for NewHorizon at $z > 0.2, \, M^*\!/M_\odot < 10^8$

Comparing Simulated and Observed Dwarf Galaxy Structure

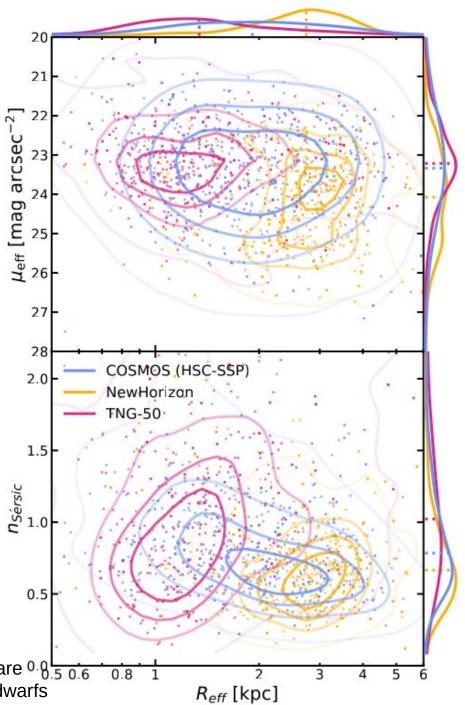

• Method:

- Non-parametric: Gini, M20, Concentration—Asymmetry—Smoothness (CAS) (Conselice+2003)
- Parametric: Single-component Sersic fits
- All calculated using statmorph (Rodriguez-Gomez+2019)
- Same selection, detection and measurement process applied to both observed and simulated galaxies → ensures structural differences reflect physics, not observational/systematic bias
- *Key Question:* Do current galaxy formation models reproduce observed dwarf galaxy structure and morphology?

http://arxiv.org/abs/2505.04509

Simulated vs. Observed Dwarf Structures Diverge

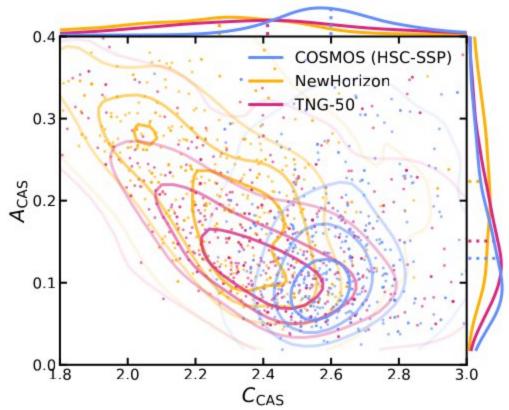
- TNG50:
 - Too compact, high concentration and steep Sérsic indices
- NewHorizon:
 - Too diffuse, large sizes, shallow Sérsic indices
- COSMOS dwarfs:
 - Span a *broad, intermediate* range not captured by either simulation
- Non-parametric metrics:
 - NewHorizon → more asymmetric & clumpy
 - TNG50 \rightarrow smoother but overly concentrated
- Neither simulation captures full observed structural diversity.

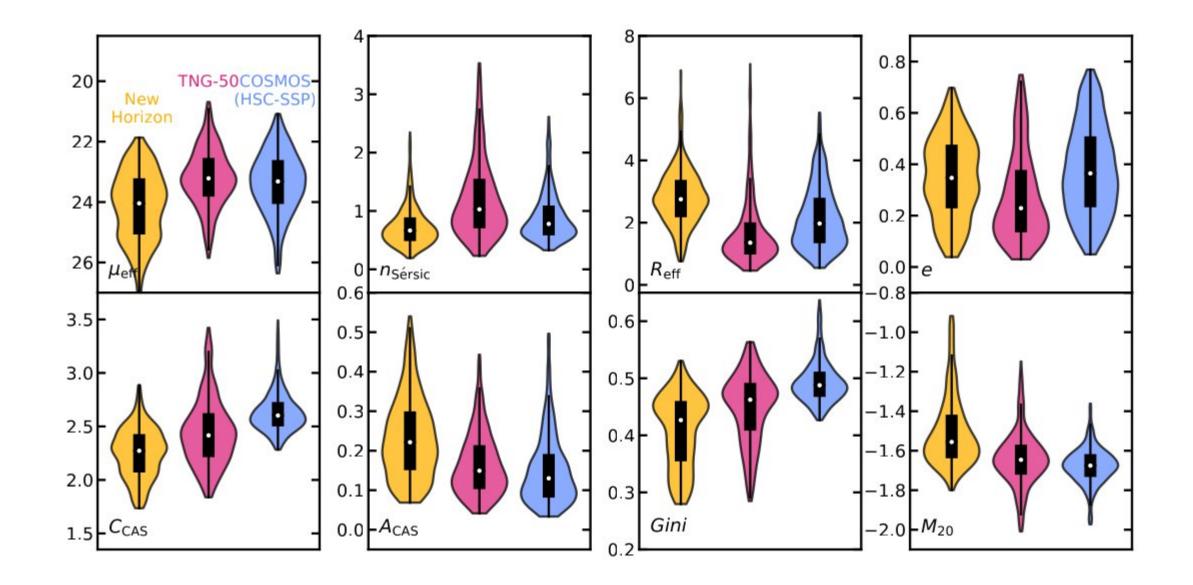


http://arxiv.org/abs/2505.04509

Simulated vs. Observed Dwarf Structures Diverge

- TNG50:
 - Too compact, high concentration and steep Sérsic indices
- NewHorizon:
 - Too diffuse, large sizes, shallow Sérsic indices
- COSMOS dwarfs:
 - Span a *broad, intermediate* range not captured by either simulation
- Non-parametric metrics:
 - NewHorizon → more asymmetric & clumpy
 - TNG50 \rightarrow smoother but overly concentrated
- Neither simulation captures full observed structural diversity.

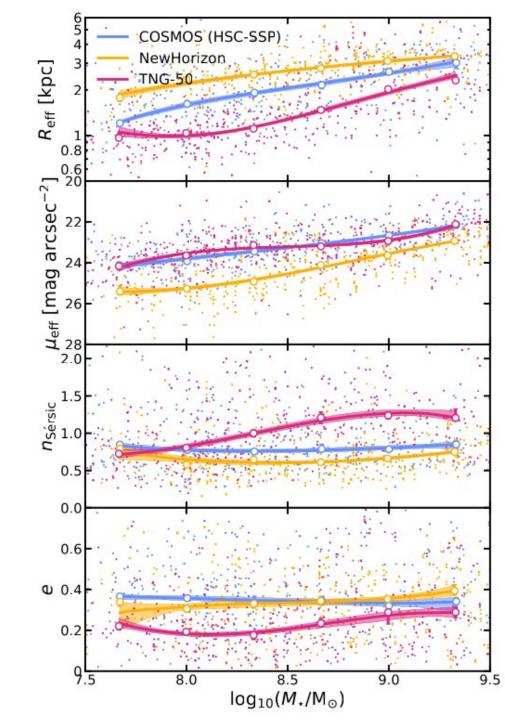

*Watkins+2025 have already shown that NewHorizon dwarfs in group environments are 0.8^{1}_{-5} 0.6 systematically larger, with lower surface brightnesses and bluer colours than Fornax dwarfs



Simulated vs. Observed Dwarf Structures Diverge

- TNG50:
 - Too compact, high concentration and steep Sérsic indices
- NewHorizon:
 - Too diffuse, large sizes, shallow Sérsic indices
- COSMOS dwarfs:
 - Span a *broad, intermediate* range not captured by either simulation
- Non-parametric metrics:
 - NewHorizon \rightarrow more asymmetric & clumpy
 - TNG50 \rightarrow smoother but overly concentrated
- Neither simulation captures full observed structural diversity.

*Watkins+2025 have already shown that NewHorizon dwarfs in group environments are systematically larger, with lower surface brightnesses and bluer colours than Fornax dwarfs



Mass Evolution Trends Differ

 At high mass end (~10^{9.5} M☉), simulations begin to converge toward observed values but still differ systematically

• TNG50:

- Strong increase in concentration and Sérsic index with mass. Large discrepancy with both NewHorizon and COSMOS
- NewHorizon:
 - Remains somewhat too diffuse even at higher masses
- COSMOS dwarfs:
 - Weak trends with mass structural properties are relatively *stable*
- Much better agreement has been shown at higher masses (e.g. **Dubois 2021, Wang & Lilly 2023**)
- Highlights limitations in how feedback and star formation scale in simulations.

Feedback & ISM Physics Drive Divergence

• TNG50:

- Smooth ISM, continuous star formation, SN feedback, and MHD processes $\rightarrow\,$ retention of low AM gas
- Promotes central gas accumulation \rightarrow compact, concentrated structures
- Insufficient angular momentum redistribution leads to overly compact galaxies

• NewHorizon:

- Multiphase ISM, bursty star formation, local SN feedback \rightarrow low angular momentum gas ejected from central regions
- Efficient redistribution of gas results in more diffuse, irregular galaxies

• Impact of Feedback:

- NewHorizon's bursty SF leads to irregular morphologies and less compact structures
- **TNG50**'s continuous SF results in **smoother, more compact galaxies.** Differences also influenced by resolution, PSF biases, and environment
- Feedback and ISM models, not resolution or observational bias, are primary drivers.

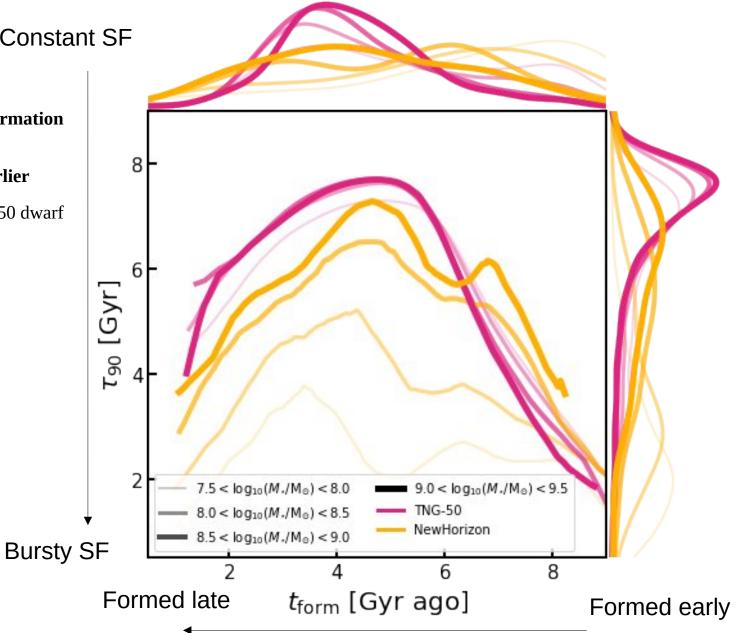
Summary

- Structural Differences:
 - Low-mass galaxies are highly sensitive to ISM, star formation, and feedback implementations
 - Reproducing global observables (e.g. stellar mass functions) isn't sufficient— resolved morphology adds crucial constraints especially given aparrent degeneracies between models in reproducing integrated properties like stellar mass (Wright+2024).
 - NewHorizon: Produces diffuse, extended galaxies with low concentration, burstier star formation
 - TNG50: Produces compact, concentrated galaxies with high central density, smoother star formation
- Feedback and ISM Physics:
 - NewHorizon: Burstier SF, dynamic ISM leads to more asymmetric and less compact galaxies as low AM gas ejected efficiently
 - **TNG50**: Continuous SF with feedback uncoupled from the central parts of galaxies, smooth ISM results in **more compact**, concentrated structures
- Discrepancy with Observations:
 - Both simulations show **divergent trends** compared to observed COSMOS dwarf galaxies, with neither fully capturing the observed structural diversity
 - Structural mismatch in dwarfs is a powerful diagnostic of sub-grid physics in simulations
- Future Insights:
 - **Next-generation surveys** like LSST and Euclid will provide larger, deeper and higher-resolution datasets to constrain and refine simulations and better understand the **physical mechanisms** driving dwarf galaxy evolution.

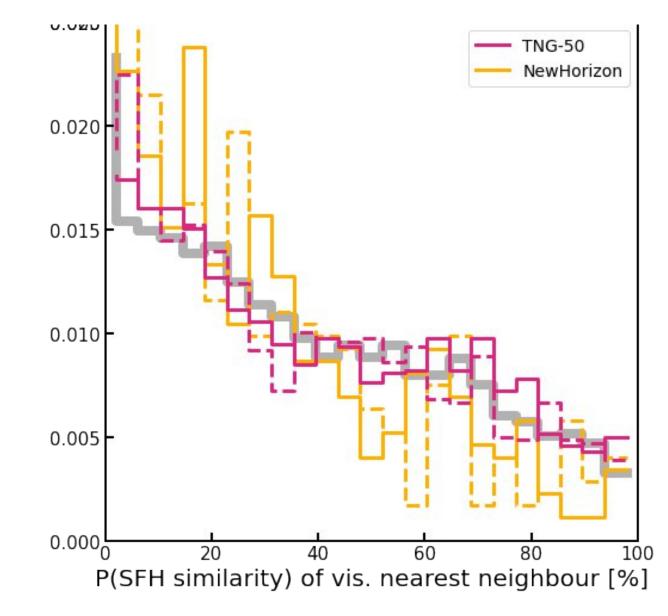
Summary

- Structural Differences:
 - Low-mass galaxies are highly sensitive to ISM, star formation, and feedback implementations
 - Reproducing global observables (e.g. stellar mass functions) isn't sufficient— resolved morphology adds crucial constraints especially given aparrent degeneracies between models in reproducing integrated properties like stellar mass (Wright+2024).
 - NewHorizon: Produces diffuse, extended galaxies with low concentration, burstier star formation
 - TNG50: Produces compact, concentrated galaxies with high central density, smoother star formation
- Feedback and ISM Physics:
 - NewHorizon: Burstier SF, dynamic ISM leads to more asymmetric and less compact galaxies as low AM gas ejected efficiently
 - **TNG50**: Continuous SF with feedback uncoupled from the central parts of galaxies, smooth ISM results in **more compact**, concentrated structures
- Discrepancy with Observations:
 - Both simulations show **divergent trends** compared to observed COSMOS dwarf galaxies, with neither fully capturing the observed structural diversity
 - Structural mismatch in dwarfs is a powerful diagnostic of sub-grid physics in simulations
- Future Insights:
 - **Next-generation surveys** like LSST and Euclid will provide larger, deeper and higher-resolution datasets to constrain and refine simulations and better understand the **physical mechanisms** driving dwarf galaxy evolution.

Additional slides


Star formation history

Constant SF


Parameterize galaxy star formation history according to their **formation** time and level of **burstiness**

NewHorizon galaxies have **more bursty SFHs** and **formed earlier**

No evolution in SFH observed as a function of mass for TNG-50 dwarf galaxies

Star formation history

Parameterize galaxy star formation history according to their **formation time** and level of **burstiness**

NewHorizon galaxies have **more bursty SFHs** and **formed earlier**

- **No evolution in SFH** observed as a function of mass for TNG-50 dwarf galaxies
- We can measure the level of **correlation between SFH and visual similarity**

Star formation history vs visual similarity

Partial correlations

NEWHORIZON				
	Morph.	SFH	M_{\star}	ρ
Morph.	-			
SFH	0.240	-		
M_{\star}	0.208	0.242	-	
ρ	0.027	-0.016	-0.0280	-
TNG-50				
	Morph.	SFH	M_{\star}	ρ
Morph.	-			
SFH	0.308	127		
M_{\star}	0.167	0.015	-	
ρ	0.238	0.475	-0.006	-
TNG (low density)				
	Morph.	SFH	M_{\star}	ρ
Morph.	-			5
SFH	0.142	-		
M_{\star}	0.232	0.022	<u>1</u>	
ρ	-0.006	0.022	-0.022	-

- Correlation between the **visual appearance of simulated galaxies** and their **star-formation histories** is seen, even controlling for mass and environment.
- Understanding this link is key to understanding the **differing dwarf galaxy properties** between the two simulations
- Observe general correlation between more **visually similar** galaxies are more likely have **similar star-formation histories**
- When **controlling for environment** only TNG-50 shows a decrease in strength of correlation
- Correlation of morphology and SFH with local density disappears when restricted to **less dense environments** dominated by internal processes in the field