The fate of Milky Way satellites: The role of halo assembly history and the dependence on subgrid physics

Gandhali Joshi ICC, Durham University

Collaborators: Andrew Pontzen, Oscar Agertz, Justin Read, Martin Rey

11/07/2025, NAM 2025, Durham University

Satellite abundance of MW/M31 mass systems

Satellite abundances likely to be correlated with host mass (or proxies) ...

Satellite abundance of MW/M31 mass systems

The PARADIGM project

(Probing the Altered Response of Algorithms to Diverse ICs with Genetic Modifications)

Two suites of zoom-in simulations of MW-mass haloes with RAMSES+VINTERCATAN (As a way and AREPO+IllustricTNC50 (m)

- RAMSES+VINTERGATAN (Agertz+ '21) and AREPO+IllustrisTNG50 (Pillepich+ '19, Nelson+ '19)
- $M_{200c} \sim 10^{12} M_{\odot}$
- $m_{DM} = 2 \times 10^5 M_{\odot}$
- $m_{bary} = 3.6 \times 10^4 M_{\odot}$
- minimum gas resolution: $\approx 11 \text{ pc}$ (VINTERGATAN), $\approx 46 \text{ pc}$ (IllustrisTNG) Three MW-mass haloes:
- Fiducial (**FM**): similar to MW merger history
 - + 4 GMs altering z=2 merger using GenetIC (Roth+ '16, Rey & Pontzen '18, Stopyra+ '21) (1:10, 1:9.8, <u>1:6</u>, 1:2.9, 1:2.1 in halo mass)
 - + Fiducial IC with early collapse
- Early former (**EF**)
- Late former (**LF**)

Key differences between the TNG and VG models

TNG	VG
Effective prescription for two-phase ISM, temperature floor at 10 ⁴ K	Resolved ISM, gas can cool to 10 K
Includes prescription for AGN feedback	No AGN feedback
Lower resolution in gas cells with minimum effective radius of ~46 pc Lower density threshold for star-formation: 0.1 $m_p \text{ cm}^{-3}$	Higher resolution in gas cells with minimum effective radius of $\sim 11 \text{ pc}$ Higher density threshold for star-formation: 100 $m_p \text{ cm}^{-3}$

BVI mock images

Satellite abundances in MW-mass hosts

V-band magnitude

TNG shows good agreement with observations VG produces too many satellites ...

Satellite abundances in MW-mass hosts

Joshi+ 2025 High mass Low mass t [Gyr] 8 t [Gyr] 8 10 6 12 12 2 10 14 2 6 14 25 TNG $\log M_* = (6 - 7)$ $0.1 < d/r_{200c} < 1.0$ $\log M_* > 7$ VG 20 # of satellites 15 10 5 0 z=4.0 z=3.0 z=2.0 z=1.5 Z=0.6 z=0.5 z=4.0 z=3.0 z=2.0 Z=1.5 z=0.8 z=0.6 z=0.5 z=0.0 z=1.0 z=0.8 z=0.4 z=0.3 Z=0.0 z=1.0 z=0.2 z=0.1 z=0.4 z=0.3 z=0.2 z=0.1 Selection epoch Across all

Numbers of satellites increase rapidly at early times and then stay approximately constant

assembly histories

Satellite disruption fractions

But most satellites from early times have been disrupted

Present-day satellites are likely from z<0.6 (~5-6 Gyr ago)

Disruption occurs when R_{50} of satellite grows by a factor of >5

How long do satellites survive in MW-mass hosts

Time between accretion and disruption

Satellites can survive for ~6-8 Gyr after accretion, regardless of:

- stellar mass
- accretion epoch
- galaxy formation model

What is the impact of merger history?

Answer: none Impact is seen on satellite abundances, but not on disruption

What is the impact of halo formation history?

Late-forming haloes build up satellites slowly, have more satellites at z=0. Early-forming haloes build up satellites quickly, then gradually lose them.

What is the impact of halo formation history?

Late-forming haloes build up satellites slowly, have more satellites at z=0. Early-forming haloes build up satellites quickly, then gradually lose them.

When and where did satellites quench?

Massive satellites quenched later, within the halo, smaller satellites quenched early and outside the halo

- TNG agrees with observations
- VG has too many satellites that quench very early

Summary

- VG predicts too many satellites compared to observations
 TNG satellite MFs are consistent with observations
- Despite the difference in normalization, there are robust trends in the two models:
 - Number of satellites, disruption fraction and disruption timescale as a function of cosmic time
 - No dependence on merger history, but satellite abundance does depend on halo formation time
 - At present-day, massive satellites were quenched more recently by the MW host, less massive satellites quenched early and outside the host

Joshi+ 2025a, MNRAS, 537, 3792

Joshi+ 2025b, arXiv: 2507.05401