Energy Fluxes in RMHD Turbulence

Erin E. Goldstraw, Asif Nawaz, Moritz Linkmann

Applied and Computational Mathematics Group School of Mathematics and Maxwell Institute for Mathematical Sciences

Plasmas

Plasma is everywhere!

• Interstellar medium, Stars, Lab plasmas.

Important applications:

- Solar/Stellar activity, Space weather, Fusion energy.
- We want to model it as accurately as possible.
- Ideally use kinetic theory...but too many particles to follow...
- ⇒ Fluid approximation: Compressible MHD model
- Widely applicable, but...very demanding...
- need more assumptions...
- but more assumptions means less applicable...
- Research Question: How can we identify which dynamics are captured and which are not?

More assumptions...

Image of coronal loops taken from https://scied.ucar.edu/suncoronal-loops from TRACE/NASA with added text.

In many applications there is/are:

- Dominant magnetic field direction,
- Small || components,
- Small || gradients.
- ⇒ reduced MHD (RMHD) model...
- Origins in fusion
- What processes are captured?
- Can it be used in other fields?
- Coronal loops?
- Turbulence?

What is RMHD? (Kadomtsev74, Strauss76, Zank93)[3, 4, 5]

A non-linear, low frequency approximation of 3D MHD.

$$\underline{B} = \frac{B_0}{\varepsilon_{KP}} \hat{\underline{e}}_z + \underline{b}^{(1)} + \varepsilon_{KP} \underline{b}^{(2)} \dots, \quad \underline{v} = \underline{v}^{(1)} + \varepsilon_{KP} \underline{v}^{(2)} \dots,$$

Assumptions:

- B_0 'large ', $\Rightarrow \varepsilon_{KP} = b^2/B_0^2 \ll 1$.
- 2 spectral anisotropy $\Rightarrow \varepsilon_S = k_{\parallel} \ll k_{\perp}$,
- variance anisotropy $\beta \lesssim 1$: $\Rightarrow B_0 \cdot v = B_0 \cdot b = 0$,

- incompressible \perp only (∂_z small).
- similar to (but not quite!) 2D MHD.

If
$$\beta \lesssim 1$$
: $b_z^{(1)} = v_z^{(1)} = 0$,
If $\beta \gg 1$: $b_z^{(1)}, v_z^{(1)} \neq 0$, passive scalars

The RMHD equations (leading order):

$$\partial_{t}\underline{v} + \underline{v} \cdot \nabla_{\perp}\underline{v} = \underline{b} \cdot \dot{\nabla}_{\perp}\underline{b} + B_{0}\partial_{z}\underline{b} - \nabla_{\perp}P + \nu\nabla_{\perp}^{2}\underline{v}, \partial_{t}\underline{b} + \underline{v} \cdot \nabla_{\perp}\underline{b} = \underline{b} \cdot \nabla_{\perp}\underline{v} + B_{0}\partial_{z}\underline{v} + \eta\nabla_{\perp}^{2}\underline{b}.$$

Dynamics captured in RMHD?

- Problem: When is RMHD applicable?
- Aim: Identify processes included/neglected in RMHD.
- Method: Apply recent framework to RMHD and compare.
- HD framework: Johnson21 [2], MHD: Capocci25 [1].
- Splits energy flux into physically meaningful measurable terms:
 - Vortex stretching.
 - Strain rate self-amplification.
 - Current filament stretching.
 - Current sheet thinning.
- Process:
 - Gaussian filter: Remove small scales below $\ell \Rightarrow$ Focus on inertial scales.
 - Introduce subgridscale (SGS) stress tensor:

$$\tau^{\ell}(f_i,g_i) = \overline{f_ig_i}^{\ell} - \overline{f_i}^{\ell}\overline{g_i}^{\ell}.$$

- $\tau \Rightarrow$ function of field gradients.
- Field gradients $\Rightarrow S \Omega J \Sigma$.

Incompressible MHD

$$\begin{aligned} \partial_t u_i + \partial_j (u_i u_j) &= -\partial_i P + \partial_j (b_i b_j), \\ \partial_t b_i + \partial_j (b_i u_j) &= \partial_j (u_i b_j), \\ \partial_i u_i &= 0, \quad \partial_i b_i &= 0. \\ \partial_t E_v + \nabla \cdot \mathcal{J}_v &= -\Pi^{I,\ell} - \Pi^{M,\ell} - W^{\ell}, \\ \partial_t E_b + \nabla \cdot \mathcal{J}_b &= -\Pi^{A,\ell} - \Pi^{D,\ell} + W^{\ell}. \end{aligned}$$

- Inertial: $\Pi^{I,\ell} = -\partial_j \overline{v_i}^{\ell} \tau^{\ell}(v_i, v_j)$.
- Maxwell: $\Pi^{M,\ell} = \partial_j \overline{v_i}^\ell \tau^\ell(b_i, b_j)$.
- Advection: $\Pi^{A,\ell} = -\partial_j \overline{b_i}^\ell \tau^\ell(b_i, v_j)$.
- Dynamo: $\Pi^{D,\ell} = \partial_j \overline{b_i}^\ell \tau^\ell(v_i, b_j)$.
- Energy Conversion: $W^{\ell} = \overline{b}_{i}^{\ell} \overline{b}_{j}^{\ell} \partial_{j} \overline{v}_{i}^{\ell}$.
- \bullet > 0 \Rightarrow forward cascade.
- Π are further split into subfluxes

MHD Dynamics (Capocci2025)

- Subfluxes are triple product of combinations of S, Ω , J, Σ .
- Example: Current sheet thinning $\Pi_{s, SJ\Sigma}^{M, \ell} \propto Tr\left(\overline{S}^{\ell}\left(\overline{J}^{\ell}\overline{\Sigma}^{\ell} \overline{\Sigma}^{\ell}\overline{J}^{\ell}\right)\right)$.

MHD Results (Capocci2025): Inertial Flux Π^I

 $\begin{array}{c} 1.00 \\ 0.75 \\ \hline 1.00 \\ 0.75 \\ \hline 0.00 \\ -0.25 \\ \hline 0.00 \\ -0.25 \\ \hline 0.00 \\ \hline 0.100 \\ \hline 0.25 \\ \hline 0.00 \\ \hline 0.100 \\ \hline 0.100$

vortex thinning

$$\Pi_{m,S\Omega S}^{\ell} = -\int_{0}^{\ell^{2}} d\theta \ \mathrm{tr} \Biggl(\overline{S}^{\ell} \Biggl(\overline{\overline{S}^{\sqrt{\theta}}} \overline{\Omega}^{\sqrt{\theta}}^{\phi} - \overline{\Omega}^{\sqrt{\theta}} \overline{\overline{S}^{\sqrt{\theta}}}^{\phi} \Biggr) \Biggr)$$

 \Rightarrow Main contribution: Vortex thinning.

MHD Results (Capocci2025): Π^M

⇒ Main contribution: Current sheet thinning and flow response.

Current work: Apply this to RMHD

The leading order RMHD equations:

$$\begin{array}{rcl} \partial_{t}v_{i}+\partial_{j}(v_{i}v_{j}) & = & -\partial_{i,\ \neq z}(P)+\partial_{j}(b_{i}b_{j})+B_{0}\partial_{z}b_{i},\\ \partial_{t}b_{i}+\partial_{j}(b_{i}v_{j}) & = & \partial_{j}(v_{i}b_{j})+B_{0}\partial_{z}v_{i}.\\ \partial_{j}\cdot v_{i} & = & \partial_{j}b_{i}=0,\quad j=x,y.\\ \Rightarrow \partial_{t}E_{v}+\nabla\cdot\mathcal{J}_{v} & = & -\Pi^{I,\ell}-\Pi^{M,\ell}-W_{\mathrm{RMHD}}^{\ell}-B_{0}\partial_{z}\overline{v}_{i}^{\ell}\overline{b}_{i}^{\ell},\\ \partial E_{b}+\nabla\cdot\mathcal{J}_{b} & = & -\Pi^{A,\ell}-\Pi^{D,\ell}+W_{\mathrm{RMHD}}^{\ell}+B_{0}\partial_{z}\overline{v}_{i}^{\ell}\overline{b}_{i}^{\ell}, \end{array}$$

- Same definitions, except $j \neq z$.
- ullet $W_{
 m RMHD}^{\ell}$ only contains ot gradients.
- $B_0\partial_z$ is the only z derivative: dz small, B_0 large.
- In theory expect same dominant processes in RMHD.
- Vortex thinning more important as B_0 increases.

RMHD Dynamics

Compare strain rate tensor for MHD and RMHD:

$$\begin{split} S_{\mathrm{MHD}} &= \begin{bmatrix} \partial_{x}v_{x} & \frac{1}{2}\left(\partial_{y}v_{x} + \partial_{x}v_{y}\right) & \frac{1}{2}\left(\partial_{z}v_{x} + \partial_{x}v_{z}\right) \\ \frac{1}{2}\left(\partial_{x}v_{y} + \partial_{y}v_{x}\right) & \partial_{y}v_{y} & \frac{1}{2}\left(\partial_{z}v_{y} + \partial_{y}v_{z}\right) \\ \frac{1}{2}\left(\partial_{x}v_{z} + \partial_{z}v_{x}\right) & \frac{1}{2}\left(\partial_{y}v_{z} + \partial_{z}v_{y}\right) & \partial_{z}v_{z} \end{bmatrix}, \\ S_{\mathrm{RMHD}} &= \begin{bmatrix} \partial_{x}v_{x} & \frac{1}{2}\left(\partial_{y}v_{x} + \partial_{x}v_{y}\right) & \frac{1}{2}\partial_{x}v_{z} \\ \frac{1}{2}\left(\partial_{x}v_{y} + \partial_{y}v_{x}\right) & \partial_{y}v_{y} & \frac{1}{2}\partial_{y}v_{z} \\ \frac{1}{2}\partial_{x}v_{z} & \frac{1}{2}\partial_{y}v_{z} & 0 \end{bmatrix}. \end{split}$$

- Low- $\beta \sim 2D$
 - Dominated by vortex and current sheet thinning
- Terms involving \parallel components \Rightarrow high- β .

Summary

Identify dynamics that are captured in RMHD.

- Low β :
 - $\bullet \sim$ 2D as in Capocci2025.
 - Nonzero subfluxes:
 - Vortex thinning: $\Pi_{s, S\Omega S}^{I, \ell}$
 - Current sheet thinning and flow response: $\Pi^{M, \ell}_{SJ\Sigma}$
 - Also dominant in full 3D MHD using DNS.
 - Vortex thinning becomes stronger as B_0 increases.
- Current work \Rightarrow High β :
 - Expect current filament stretching to become more important.
 - \bullet Understand how the \parallel components affect the dynamics.

Thank you!
Questions? Comments? Feedback?
Get in touch at: erin.goldstraw@ed.ac.uk

Damiano Capocci, Perry L. Johnson, Sean Oughton, Luca Biferale, and Moritz Linkmann.

Energy flux decomposition in magnetohydrodynamic turbulence.

Journal of Plasma Physics, 91(1):E11, 2025.

Perry L. Johnson.

On the role of vorticity stretching and strain self-amplification in the turbulence energy cascade.

Journal of Fluid Mechanics, 922:A3, 2021.

B. B. Kadomtsev and O. P. Pogutse.

Nonlinear helical perturbations of a plasma in the tokamak. *JETP*, 38(2):283, February 1974.

H. R. Strauss.

Nonlinear, three-dimensional magnetohydrodynamics of noncircular tokamaks.

The Physics of Fluids, 19(1):134–140, 1976.

G. P. Zank and W. H. Matthaeus.

The equations of reduced magnetohydrodynamics.