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Plasmas

Plasma is everywhere!

Interstellar medium, Stars, Lab plasmas.

Important applications:

Solar/Stellar activity, Space weather, Fusion energy.

We want to model it as accurately as possible.

Ideally use kinetic theory. . . but too many particles to follow. . .

⇒ Fluid approximation: Compressible MHD model

Widely applicable, but. . . very demanding. . .

need more assumptions. . .

but more assumptions means less applicable. . .

Research Question: How can we identify which dynamics are
captured and which are not?



More assumptions...

Image
of coronal loops taken from
https://scied.ucar.edu/sun-
coronal-loops from
TRACE/NASA with added
text.

In many applications there is/are:

Dominant magnetic field direction,
Small ∥ components,
Small ∥ gradients.

⇒ reduced MHD (RMHD) model. . .

Origins in fusion

What processes are captured?

Can it be used in other fields?

Coronal loops?

Turbulence?



What is RMHD? (Kadomtsev74,Strauss76,Zank93)[3, 4, 5]

A non-linear, low frequency approximation of 3D MHD.

B = B0
εKP

êz + b(1) + εKPb
(2) . . . , v = v (1) + εKPv

(2) . . . ,

Assumptions:

1 B0 ‘large ’,
⇒ εKP = b2/B2

0 ≪ 1.
2 spectral anisotropy

⇒ εS = k∥ ≪ k⊥,
3 variance anisotropy

β ≲ 1:
⇒ B0 · v = B0 · b = 0,

∇⊥ · b = 0, ∇⊥ · v = 0.
incompressible ⊥ only (∂z small).
similar to (but not quite!) 2D
MHD.

If β ≲ 1: b
(1)
z = v

(1)
z = 0,

If β ≫ 1: b
(1)
z , v

(1)
z ̸= 0, passive

scalars

The RMHD equations (leading order):
∂tv + v · ∇⊥v = b · ∇⊥b + B0∂zb −∇⊥P + ν∇2

⊥v ,
∂tb + v · ∇⊥b = b · ∇⊥v + B0∂zv + η∇2

⊥b.



Dynamics captured in RMHD?

Problem: When is RMHD applicable?

Aim: Identify processes included/neglected in RMHD.

Method: Apply recent framework to RMHD and compare.

HD framework: Johnson21 [2], MHD: Capocci25 [1].

Splits energy flux into physically meaningful measurable terms:

Vortex stretching.
Strain rate self-amplification.
Current filament stretching.
Current sheet thinning.

Process:

Gaussian filter: Remove small scales below ℓ ⇒ Focus on inertial
scales.
Introduce subgridscale (SGS) stress tensor:

τ ℓ(fi , gj) = figj
ℓ − fi

ℓ
gj

ℓ.
τ ⇒ function of field gradients.
Field gradients ⇒ S Ω J Σ.



Incompressible MHD

∂tui + ∂j(uiuj) = −∂iP + ∂j(bibj),
∂tbi + ∂j(biuj) = ∂j(uibj),
∂iui = 0, ∂ibi = 0.
∂tEv +∇ · Jv = −ΠI ,ℓ − ΠM,ℓ −W ℓ,
∂tEb +∇ · Jb = −ΠA,ℓ − ΠD,ℓ +W ℓ

Inertial: ΠI ,ℓ = −∂jvi
ℓτ ℓ(vi , vj).

Maxwell: ΠM,ℓ = ∂jvi
ℓτ ℓ(bi , bj).

Advection: ΠA,ℓ = −∂jbi
ℓ
τ ℓ(bi , vj).

Dynamo: ΠD,ℓ = ∂jbi
ℓ
τ ℓ(vi , bj).

Energy Conversion: W ℓ = b
ℓ
i b

ℓ
j∂jv

ℓ
i .

> 0 ⇒ forward cascade.

Π are further split into subfluxes



MHD Dynamics (Capocci2025)

Subfluxes are triple product of combinations of S , Ω, J, Σ.

Example: Current sheet thinning -

ΠM, ℓ
s, SJΣ ∝ Tr

(
S
ℓ
(
J
ℓ
Σ
ℓ − Σ

ℓ
J
ℓ
))

.



MHD Results (Capocci2025): Inertial Flux ΠI

⇒ Main contribution: Vortex thinning.



MHD Results (Capocci2025): ΠM

⇒ Main contribution: Current sheet thinning and flow response.



Current work: Apply this to RMHD

The leading order RMHD equations:

∂tvi + ∂j(vivj) = −∂i , ̸=z (P) + ∂j(bibj) + B0∂zbi ,

∂tbi + ∂j(bivj) = ∂j(vibj) + B0∂zvi .

∂j · vi = ∂jbi = 0, j = x , y .

⇒ ∂tEv +∇ · Jv = −ΠI ,ℓ − ΠM,ℓ −W ℓ
RMHD − B0∂zv

ℓ
i b

ℓ
i ,

∂Eb +∇ · Jb = −ΠA,ℓ − ΠD,ℓ +W ℓ
RMHD + B0∂zv

ℓ
i b

ℓ
i

Same definitions, except j ̸= z .

W ℓ
RMHD only contains ⊥ gradients.

B0∂z is the only z derivative: dz small, B0 large.

In theory expect same dominant processes in RMHD.

Vortex thinning more important as B0 increases.



RMHD Dynamics

Compare strain rate tensor for MHD and RMHD:

SMHD =

 ∂xvx
1
2 (∂yvx + ∂xvy )

1
2 (∂zvx + ∂xvz)

1
2 (∂xvy + ∂yvx) ∂yvy

1
2 (∂zvy + ∂yvz)

1
2 (∂xvz + ∂zvx)

1
2 (∂yvz + ∂zvy ) ∂zvz

,
SRMHD =

 ∂xvx
1
2 (∂yvx + ∂xvy )

1
2∂xvz

1
2 (∂xvy + ∂yvx) ∂yvy

1
2∂yvz

1
2∂xvz

1
2∂yvz 0

.
Low-β ∼ 2D

Dominated by vortex and current sheet thinning

Terms involving ∥ components ⇒ high-β.



Summary

Identify dynamics that are captured in RMHD.

Low β:

∼ 2D as in Capocci2025.
Nonzero subfluxes:

Vortex thinning: ΠI , ℓ
s, SΩS

Current sheet thinning and flow response: ΠM, ℓ
SJΣ

Also dominant in full 3D MHD using DNS.

Vortex thinning becomes stronger as B0 increases.

Current work ⇒ High β:

Expect current filament stretching to become more important.
Understand how the ∥ components affect the dynamics.

Thank you!
Questions? Comments? Feedback?

Get in touch at: erin.goldstraw@ed.ac.uk
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