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* Thermal conduction about nulls g

ABSTRACT
Magnetic null points are an important aspect of the magnetic field structure of the solar corona and can be sites of enhanced
dissipation. This paper uses analytical and numerical models to investigate the plasma structure around a heated null. It is shown

* Heating null points

* Equilibrium Thermal Structure

* Numerical, physical or both?

* Cooling X-Points

* ‘Real heating and cooling
* Photospheric Driving

that the profile not only differs
on the spa

y from that in a uniform field, but also that the profile depends significantly
structure of the heating. Field lines close to the separatrices and the null point have higher temperatures than a

uniform field for the same heating input. The dependence of the results near the null on both the ratio of perpendicular to parallel

conduction, and numeris

I resolution is also explored. The comparison between analytic and numerical solutions also provides

a useful benchmark to compare MHD codes with anisotropic thermal conduction
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1 INTRODUCTION

The heating of the solar corona is a highly topical research area and
several possible heating mechanisms have been suggested (e.g. Hey-
vaerts & Priest 1983; Klimchuk 2006; Van D Andries &

nagnetic fields.

Parenti et al. 2017), the cooling of hot plasma is very rapid in such
braided fields. and this poses major challenges for detectability (e.g.
Barnes, Cargill & Bradshaw 2016).
There i magnetic iated
ith dissi ly i (e.¢. Lan & Fian 1990;

Poedts 2007: Hood. Browning & Van der Linden 2009; Parnell &
De Moortel 2012; De Muortel & Browning 2015). One is the
dissipation of hydromagnetic waves which we discuss in Section 5.
An alternative (e.g. Parker 1972; Cargill, Warren & Bradshaw 2015)
is that magnetic energy is slowly stored in the coronal magneti

field and released in a series of small reconnection ew
termed ‘nanoflares’ (¢.g. Parker 1988). This is
in terms of field line braiding (c.g. Zirker & Cleveland 1993; Pos
et al. 2016), where the local magnetic field becomes mis-aligned,
g reconnection, which in turn leads to heating and particle
acceleration in the vicinity of the reconnection site. In terms of
the plasma properties, for quasi-steady heating. an equilibrium is
anained among the heating. thermal conduction and optically thin
radiation (e.g. Rosner. Tucker & Vaiana 1978). though footpoint
heating can lead o different outcomes (¢.g. Antiachos & Klimehuk
1991; Froment et al. 2018). For impulsive heating, defined as arising
when the duration of the heating is shorter than the characteristic
timescale of plasma cooling. the plasma first cools by conduction,
then by radiation (e.g. Cargill, Mariska & Antiochos 1995). The
conductive cooling time scales as T=5/2 and, for typical active region
parameters, it is of order a few hundred seconds, shorter than cooling
due to optically thin radiation at such temperatures. However, i
very high temperatures, of order 10 MK, are reached. as suggested
by some observations (e.g. Reale et al. 2009; Testa & Reale 2012:

a
Parmell etal. 1996: Brown & Priest 2001 ). Their copious existence are
inferred by Close, Parnell & Priest (2004), Régnier. Pamell & Haynes
(2008), and Longcope & Pamell (2009) and observed by Cheng et al.
(2023). Such null points are domains of weak magnetic field and it
has been suggested (e.g. Galsganrd & Pontin 201 1) that siressing the
magnetic field near these points will result in the build-up of strong

which then dissi irect pl and
(viscously damped) mass motions. Thus, heating associated with the
null is net a local proeess, with a significant plasma volume being
heated. While the build up and dissipation of magnetic energy at
such nulls has been widely investigated (e.g. Craig & MeClymont
1991; MeLaughlin & Hood 2004, 2006; McLaughlin 2013), the
thermodynamic response of the plasma to heating events, and to
associated energy transport. in the neighbourhood of coronal null
points has not been studied in any detail. That is the aim of this and
subsequent papers.

In the strong field limit thermal conduction is aligned with the
magnetie field (Braginskii 1965). However, the null introduces some
potentially significant differences to conductive transport. Firstly, as
the field around the null becomes small, thermal conduction must
reduce to the isotropic form, while a full anisotropie conduction
must be implemented elsewhere. Despite many magnetohydrody-
namic (MHD) codes having implemented such an anisotropic heat
conduction, there has been no quantification of how they cope with
I points. Secondly. the magnetic field strength around the null
is highly non-uniform. It is well known that the cross-section of

* E-mail: dj57@st-andrews.ac.uk a magnetic flux element has a significant influence on conductive
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[- Accuracy of numerical treatments \
* Thermal conduction about nulls
e Heating null points

* Equilibrium Thermal Structure

\- Numerical, physical or both? /

[ + Cooling X-Points ] - Working on corrections

e ‘Real’ heating and cooling

* Photospheric Driving
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« Thermal conduction in a plasma with a strong magnetic field is highly
anisotropic (Spitzer and Harm (1953), Braginskii (1965), Balescu (1988)).

* Fourier’s law can be transformed with respect to the magnetic field.

4 qQ=—rVI )

q=—rV(T) =KV (T)
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Lare3D — Numerical Treatment “’% %
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Thermodynamics of a Heated Null Point?
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Question: “Isn’t this all jJust numerical
and mathematical nonsense”

Tom Howson
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Paper 2

www.st-andrews.ac.uk dj57 @st-andrews.ac.uk



%8S University of

?};’ St Andrews

Peter Cargill recognised that the solutions in Paper 1 can be used as
solutions to estimate cooling, based on traditional techniques.

See Antiochos & Sturrock (1976) and Cargill et al. (2022) for details.
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Nulls Cool Much More
Slowly than Straight Field
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Nulls Tend to Cool
In a Predictable Way
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Figure 4. Lare results for the cooling of equilibrium 5 (constant heating: upper panels) and 10 (B? heating: lower panels). The left (right) hand plot shows the
evolution of the temperature (pressure) at 6 locations along the symmetry line. For constant heating the pressure results lie on top of each other. The dashed and
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Conclusions

* The geometry of the magnetic field of an X-point significantly influences the equilibrium
temperature distribution.

* The equilibrium solution depends heavily on the form of heating; heating at the null leads to
singular solutions, with Bmin=0.

 If we do not heat the null, finite temperatures are produced.

* Null point geometries heavily influence heating and cooling.

* Only infinite simulation resolution will resolve the problem if Bmin=0. Bmin is very
small!

* The null should be much hotter if there is a guide field!
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Paper 1: Johnson et al. (2024). The thermodynamic response of heating
at coronal null points. MNRAS.

Paper 2: Cargill, Hood and Johnson (2025 — very soon). Heating and
cooling at a coronal magnetic null. MNRAS.
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Resistivity and Numerical Nonsense
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LeosE T i Resistivity Models
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Osclillatory Reconnection
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Figure 2. Plot of (0, 0. r) at the null point against time for the baseline simulation (3 = 107", The green dashed line denotes j. = 0, with the blue dashed line
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Cold Nulls — Coronal Rain Formation
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Question: “Where are all the hot null points in the observations?”
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How does the equilibrium temperature compare to straight field?
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Field Aligned Conduction and the
Magnetic Field
(why should the null be hotter?)
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How does the geometry of a magnetic field influence field
aligned thermal conduction? See (Antiochos & Sturrock 1976
and Cargill et al. 2022).
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Along a Separatrix
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You can not cool a null with field
alighed thermal conduction!
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