

A lobster eye telescope for the Jovian system

N. A. Carr¹, C. H. Feldman¹, S. T. Lindsay¹, A. Martindale¹, S. Wharton¹, J. Nichols¹, W. Dunn², B. Parry² 1) School of Physics and Astronomy, University of Leicester 2) MSSL, University College London

X-rays in the Jovian System

EQUATORIAL EMISSION

Solar protons Thompson and k-shell scattering (Branduardi-Raymont, 2007)

RADIATION BELTS AND IO PLASMA TORUS

Inverse-Compton, ultra relativistic electrons Charge exchange, collisions and solar protons (Ezoe, 2010)

X-RAY AURORAE

Bremsstrahlung hard and soft X-rays (Branduardi-Raymont, 2007) (Nichols, 2016)

0.02

0.04

GALILEAN MOONS

Electron and particle induced X-ray emission (EIXE and PIXE) (Elsner, 2002)

Novel X-ray Optics

Lobster Eye Optics

- Inspired by the eyes of crustaceans
- Tiny pores which focus low flux light effectively
- Pores arranged over a sphere large FOV

1 mm

Novel X-ray Optics

Micropore Optics

- Grazing incidence optics
- An array of square pores
- X-rays reflect once or twice off the pore walls
- X-rays focus to a central point and vertical and horizontal cross-arms

Telescope Design

Heritage in X-ray telescopes

Left to right: BepiColombo Mercury Imaging X-ray Spectrometer (Bunce, 2020), SVOM Microchannel X-ray Telescope (Mercier, 2018), SMILE Soft X-ray Imager (Sembay, 2023), Einstein Probe Wide-field X-ray Telescope (Yuan, 2018), THESEUS (O'Brien, 2020).

Recontextualising for a Jovian mission

Specifications – Spatial resolution, radius of curvature, number of MPOs, focal length, detector etc. Produce instrument specifications by considering:

- Size of Jupiter, the system, moons, auroral features etc.
- Current MPO resolutions and the potential of future improvements
- Orbital parameters of the COMPASS concept mission (Clark, 2025. Under review)

ements x, 2025. Under review)

X-ray Telescope Specifications

COMPASS Orbits

- Furthest apojove = 60 RJ
- Closest perijove = 1RJ

Orbital distance from Jupiter (RJ)	Size of Jupiter (degrees)	Size of radiation belts (degrees)	
60	1	6.3	
5	11	53	

Current MPOs

• Resolution = 11' (0.16. deg)

Spatial resolution of the MPO affects the ability to observe

features - e.g. auroral arc

MPO resolution		Resolution at 5RJ		
arcmin	degrees	km	RJ	
3	0.5	311.9	0.0044	
5	0.083	517.8	0.0072	
8	0.13	811.1	0.0113	
11	0.16	998.2	0.0149	

Telescope Optics Design

- 6x6 array of 40mm x 40mm MPOs 4mm gap between each aperture (38mm x 38mm)
- 650mm radius of curvature
- 19 degree field of view
- Detector TBD

These specifications can be used in Q to simulate the PSF of the instrument

1	2	3	4	5	6	
48	648	648	648	648	648	
- 60	2.4 60	2.4 60	2.4 60	2.4 60	2.4 60	
7	8	9	10	11	12	
48	648	648	648	648	648	
60	2.4 60	2.4 60	2.4 60	2.4 60	2.4 60	
3	14	15	16	17	18	
48	648	648	648	648	648	
60	2.4 60	2.4 60	2.4 60	2.4 60	2.4 60	
9	20	21	22	23	24	
48	648	648	648	648	648	
60	2.4 60	2.4 60	2.4 60	2.4 60	2.4 60	
25	26	27	28	29	30	
48	648	648	648	648	648	
60	2.4 60	2.4 60	2.4 60	2.4 60	2.4 60	
1	32	33	34	35	36	
48	648	648	648	648	648	
60	2.4 60	2.4 60	2.4 60	2.4 60	2.4 60	
			1			
100	-50)	0	50	100	150

Modelling the Jovian System

- Line of sight integrated images through an emissivity model – similar FOV as telescope concept
- Based on Wharton et. al., 2025 a & b empirical X-ray models for SMILE have been developed to simulate X-ray images at Jupiter

a - Jupiter and radiation belts from a distance
b - Close-up view of the northern aurora
c - Side-on view of lo with Jupiter in the
background
d - Nightside view of Europa with Jupiter in the

background

(Images by S. Wharton (University of Leicester) for use in paper in progress by N. Carr (University of Leicester))

Modelling MPOs

Q - X-ray optics modelling programme

For this purpose:

- Monoenergetic 1.49 keV X-rays Vertical Test Facility
- One million X-ray photons
- Produces a clear and useful image of X-rays being focussed from infinity onto a detector surface

Convolution onto Jovian X-ray image

- PSF produced by Q used as a convolution matrix
- Simple convolution of PSF matrix over the image produced by Wharton of the X-rays from Jupiter
- Starts to build an idea of the possible science with current MPO technology

b) Comparison of X-ray image from Wharton model vs. X-ray image after being focussed through 6x6 MPO array

Summary and Future Work

- Novel X-ray optics have opened a new pathway of in situ X-ray observations
- Current MPOs provide a suitable spatial resolution to resolve finer details in aurorae etc.
- Plethora of high energy planetary science to be studied
- Further development of Jupiter and optics X-ray models quantify results
- Produce PSFs with VTF and TTF to compare with model results
- Working alongside industry partners to further improve the optics performance

N. A. Carr – Space Projects and Instrumentation, University of Leicester nac28@leicester.ac.uk

UNIVERSITY OF LEICESTER

