

A lobster eye telescope for the Jovian system

N. A. Carr¹, C. H. Feldman¹, S. T. Lindsay¹, A. Martindale¹, S. Wharton¹, J. Nichols¹, W. Dunn², B. Parry² 1) School of Physics and Astronomy, University of Leicester 2) MSSL, University College London

X-rays in the Jovian System

EQUATORIAL EMISSION

Solar protons Thompson and k-shell scattering (Branduardi-Raymont, 2007)

RADIATION BELTS AND IO PLASMA TORUS

Inverse-Compton, ultra relativistic electrons Charge exchange, collisions and solar protons (Ezoe, 2010)

X-RAY AURORAE

Bremsstrahlung hard and soft X-rays (Branduardi-Raymont, 2007) (Nichols, 2016)

GALILEAN MOONS

Electron and particle induced X-ray emission (EIXE and PIXE) (Elsner, 2002)

Novel X-ray Optics

Lobster Eye Optics

- Inspired by the eyes of crustaceans
- Tiny pores which focus low flux light effectively
- Pores arranged over a sphere large FOV

1 mm

Novel X-ray Optics

Micropore Optics

- Grazing incidence optics
- An array of square pores
- X-rays reflect once or twice off the pore walls
- X-rays focus to a central point and vertical and horizontal cross-arms

Telescope Design

Heritage in X-ray telescopes

Left to right: BepiColombo Mercury Imaging X-ray Spectrometer (Bunce, 2020), SVOM Microchannel X-ray Telescope (Mercier, 2018), SMILE Soft X-ray Imager (Sembay, 2023), Einstein Probe Wide-field X-ray Telescope (Yuan, 2018), THESEUS (O'Brien, 2020).

Recontextualising for a Jovian mission

Specifications – Spatial resolution, radius of curvature, number of MPOs, focal length, detector etc. Produce instrument specifications by considering:

- Size of Jupiter, the system, moons, auroral features etc.
- Current MPO resolutions and the potential of future improvements
- Orbital parameters of the COMPASS concept mission (Clark, 2025. Under review)

ements x, 2025. Under review)

X-ray Telescope Specifications

COMPASS Orbits

- Furthest apojove = 60 RJ
- Closest perijove = 1RJ

Orbital distance from Jupiter (RJ)	Size of Jupiter (degrees)	Size of radiation belts (degrees)
60	1	6.3
5	11	53

Current MPOs

• Resolution = 11' (0.16. deg)

Spatial resolution of the MPO affects the ability to observe

features - e.g. auroral arc

MPO resolution		Resolution at 5RJ		
arcmin	degrees	km	RJ	
3	0.5	311.9	0.0044	
5	0.083	517.8	0.0072	
8	0.13	811.1	0.0113	
11	0.16	998.2	0.0149	

Telescope Optics Design

- 6x6 array of 40mm x 40mm MPOs 4mm gap between each aperture (38mm x 38mm)
- 650mm radius of curvature
- 19 degree field of view
- Detector TBD

These specifications can be used in Q to simulate the PSF of the instrument

		-				
8 60	2 648 2.4 60	3 648 2.4 60	4 648 2.4 60	5 648 2.4 60	6 648 2.4 60	
,	8	9	10	11	12	
8	648	648	648	648	648	
60	2.4 60	2.4 60	2.4 60	2.4 60	2.4 60	
3	14	15	16	17	18	
8	648	648	648	648	648	
60	2.4 60	2.4 60	2.4 60	2.4 60	2.4 60	
9	20	21	22	23	24	
8	648	648	648	648	648	
60	2.4 60	2.4 60	2.4 60	2.4 60	2.4 60	
5	26	27	28	29	30	
8	648	648	648	648	648	
60	2.4 60	2.4 60	2.4 60	2.4 60	2.4 60	
1	32	33	34	35	36	
8	648	648	648	648	648	
60	2.4 60	2.4 60	2.4 60	2.4 60	2.4 60	
100	-50	.(0	50	100	150

Modelling the Jovian System

- Line of sight integrated images through an emissivity model – similar FOV as telescope concept
- Based on Wharton et. al., 2025 a & b empirical X-ray models for SMILE have been developed to simulate X-ray images at Jupiter

a - Jupiter and radiation belts from a distance
b - Close-up view of the northern aurora
c - Side-on view of lo with Jupiter in the
background
d - Nightside view of Europa with Jupiter in the

background

(Images by S. Wharton (University of Leicester) for use in paper in progress by N. Carr (University of Leicester))

Modelling MPOs

Q - X-ray optics modelling programme

For this purpose:

- Monoenergetic 1.49 keV X-rays Vertical Test Facility
- One million X-ray photons
- Produces a clear and useful image of X-rays being focussed from infinity onto a detector surface

Convolution onto Jovian X-ray image

- PSF produced by Q used as a convolution matrix
- Simple convolution of PSF matrix over the image produced by Wharton of the X-rays from Jupiter
- Starts to build an idea of the possible science with current MPO technology

b) Comparison of X-ray image from Wharton model vs. X-ray image after being focussed through 6x6 MPO array

Summary and Future Work

- Novel X-ray optics have opened a new pathway of in situ X-ray observations
- Current MPOs provide a suitable spatial resolution to resolve finer details in aurorae etc.
- Plethora of high energy planetary science to be studied
- Further development of Jupiter and optics X-ray models quantify results
- Produce PSFs with VTF and TTF to compare with model results
- Working alongside industry partners to further improve the optics performance

N. A. Carr – Space Projects and Instrumentation, University of Leicester nac28@leicester.ac.uk

UNIVERSITY OF LEICESTER

