Magnetic Fields at the Heart of a ULIRG: Arp220

Kate Pattle, UCL, Qizhou Zhang, SMA, Yifan Ding, Imperial College

Dave Clements Imperial College London

DSFGs

- Dusty star forming galaxies are the sites of the most rapid star formation in the universe 100 to >1000 Msun per year
- May dominate the SFRD of the universe at some redshifts
- Most of their energy (>95%) emerges in the FIR not optical/UV
- Local DSFGs ULIRGs are galaxy mergers

Parmar et al. in prep

DSFGs

- Dusty star forming galaxies are the sites of the most rapid star formation in the universe 100 to >1000 Msun per year
- May dominate the SFRD of the universe at some redshifts
- Most of their energy (>95%) emerges in the FIR not optical/UV
- Local DSFGs ULIRGs are galaxy mergers

IRAS 13342+3932

IRAS 18580+6527

IRAS 16007+3743

IRAS 06268+3509

IRAS 14348-1447

Arp 299

IRAS 12112+0305

Markarian 463

IRAS 11087+5351

- Ubiquitous feature of the ISM but poorly studied in far-IR in nearby galaxies due to lack of facilities (eg. closure of SOFIA)
- Different structures seen in radio and dust polarization
- On large scales magnetic fields follow spiral structure
- Can be affected by outflows from starbursts or AGN
- Now detected out to very high redshift in strongly lensed systems

Dust Polarization to Magnetic Fields

Unpolarized Starlight Least likely orientation

- Ubiquitous feature of the ISM but poorly studied in far-IR in nearby galaxies due to lack of facilities (eg. closure of SOFIA)
- Different structures seen in radio and dust polarization
- On large scales magnetic fields follow spiral structure
- Can be affected by outflows from starbursts or AGN
- Now detected out to very high redshift in strongly lensed systems

- Ubiquitous feature of the ISM but poorly studied in far-IR in nearby galaxies due to lack of facilities (eg. closure of SOFIA)
- Different structures seen in radio and dust polarization
- On large scales magnetic fields follow spiral structure
- Can be affected by outflows from starbursts or AGN
- Now detected out to very high redshift in strongly lensed systems

Borlaff et al. 2023

- Ubiquitous feature of the ISM but poorly studied in far-IR in nearby galaxies due to lack of facilities (eg. closure of SOFIA)
- Different structures seen in radio and dust polarization
- On large scales magnetic fields follow spiral structure
- Can be affected by outflows from starbursts or AGN
- Now detected out to very high redshift in strongly lensed systems

Pattle et al., 21

- Ubiquitous feature of the ISM but poorly studied in far-IR in nearby galaxies due to lack of facilities (eg. closure of SOFIA)
- Different structures seen in radio and dust polarization
- On large scales magnetic fields follow spiral structure
- Can be affected by outflows from starbursts or AGN
- Now detected out to very high redshift in strongly lensed systems

z=5.6 Chen et al., 2024

Dec.

z=2.6 Geach et al., 2023

Magnetic Fields in Mergers

- Not much simulation work done on MHD (vs. HD) on galaxies or galaxy mergers
- Whittingham et al. (2023):
 - 'We find that magnetic fields modify the transport of angular momentum, systematically hastening the merger progress.'
 - 'stellar feedback is substantially less influential in MHD simulations, which allows for the later accretion of higher angular momentum gas'
- Implies impact on both star formation in the merger providing fuel faster & longer - and increasing SMBH growth

Magnetic Fields in Local ULIRGs

- Star formation in most local ULIRGs is dominated by their central regions
 - Late stage mergers so can look for AGN and other feedback effects leading to quenching
 - Bright & compact in the far-IR/submm
- Need interferometry for this since scales are much smaller than SOFIA can reach (or PRIMA in the future)
- Start with the nearest and brightest: Arp220
 - Turns out it's the only ULIRG bright enough for polarization observations with the SMA

6 of 8 antennae used for these observations
Dual receiver mode with 24 GHz bandwidth 347 GHz central frequency
0.77x0.45 arcsec beam (EXT config)
1mm PWV - excellent conditions
3mJy 1σ in I, 0.5 mJy in Q and U

1. 20

Circles indicate known dust/gas disks, red/blue arrows indicate known outflow in W nucleus

Results

- Dust polarization and thus magnetic fields detected in brighter W nucleus at 6σ, with 2.7±0.45% polarization
- Magnetic field aligned with dust/ molecular disk
 - Slight misalignment due to interaction effects?
- No sign of young (~10⁵ yr) outflow reshaping magnetic fields yet
 - Magnetic field confining outflow?

See Clements et al. 2025 for more details

Next Steps

- E nucleus ~ 1/2 as bright as W nucleus, so would not expect to detect polarization at this level (still get 2.8σ indicative result)
 - More data coming which should be able to get to sufficient depth
- Ideally need more sensitivity and resolution to see better what's going on
- Need sample of local ULIRGs to get information on population
 - Suggests need for ALMA and NOEMA: proposals submitted or in prep

Our SMA intensity image

Archival ALMA intensity image at same freq (Scoville PI)

Archival polarization data exist for Arp220 but are not yet public

ALMA image including CO emission & continuum

37

- o

2

Ņ

57.20 57.15

57.10

Right ascension

GENERAL OBSERVER SCIENCE

PRIMA's 3-5 orders of magnitude gain in spectral mapping speed unlocks science discovery space between JWST and ALMA. With 75% of observing time dedicated to GO science, PRIMA can obtain spectra of hundreds more protoplanetary disks, young stars, and distant galaxies than Herschel. See the PRIMA GO Science Book (https://arxiv.org/abs/2310.20572) for cases already identified by the community.

PRIMA Website prima.ipac.caltech.edu

Conclusions

- Magnetic fields potentially important in mergers and starbursts
- Dust polarization studies with mm/submm interferometers now possible
- SMA observations have detected dust polarization in Arp220
- New window on the forces that control the brightest far-IR sources in the local universe