

#### ALMA Central molecular zone Exploration Survey

Daniel Walker UK ALMA Regional Centre The University of Manchester

**24 μm**, 8 μm, 4.5 μm

100 pc

The SFR in the CMZ is ~ an order of magnitude lower than expected given the huge reservoir (>10<sup>7</sup>  $M_{\odot}$ ) of dense (>10<sup>4</sup> cm<sup>-3</sup>) gas.

Why?



Henshaw et al. 2023 PPVII review

#### ALMA Central molecular zone Exploration Survey (ACES)

#### Motivation

- What are the physical mechanisms driving mass flows as a function of size and location?
- What is the 3D distribution of gas in the CMZ?
- How is star formation regulated by environmental conditions?

Answering these questions requires uniform measurements of the physical, kinematic, and chemical properties of the gas from global to core scales

#### ACES

#### Aim

To build a complete, multi-scale picture of the mechanisms shaping the CMZ from global (100 pc) down to individual star-forming (0.1 pc) scales

Strategy

Observe a uniform, contiguous mosaic of molecular lines and dust continuum covering all gas above N(H<sub>2</sub>) ~ 10<sup>22</sup> cm<sup>-2</sup> in Band 3 at ~ 2" resolution

Combine with state-of-the-art simulations



# ACES

- Narrow SPWs: HNCO & HCO+ (0.2 km/s)
- Med. SPWs: SiO, H<sup>13</sup>CO<sup>+</sup>, HN<sup>13</sup>C, etc. (1.7 km/s)
- Broad SPWs: CS, HC<sub>3</sub>N, H40α, SO, etc. (3 km/s)
- + GBT MUSTANG data for single-dish continuum

- 120 hrs (12m)
- 360 hrs (7m)
- 700 hrs (TP)
- > 5000 pointings



# ACES

- Narrow SPWs: HNCO & HCO+ (0.2 km/s)
- Med. SPWs: SiO, H<sup>13</sup>CO<sup>+</sup>, HN<sup>13</sup>C, etc. (1.7 km/s)
- Broad SPWs: CS, HC<sub>3</sub>N, H40α, SO, etc. (3 km/s)
- + GBT MUSTANG data for single-dish continuum

Largest ALMA mosaic ever observed

- 120 hrs (12m)
- 360 hrs (7m)
- 700 hrs (TP)
- > 5000 pointings



### ACES + GBT MUSTANG 3 mm continuum



#### Mix of thermal, ionised, and non-thermal emission

Ginsburg et al. (in prep.)

### ACES + GBT MUSTANG 3 mm continuum



Compact source catalogue has been produced with 1000s of candidate sources

Jen Wallace et al. (in prep.)

#### HNCO peak intensity (Mopra CMZ survey)



Jones et al. (2012)

#### HNCO peak intensity (ACES)



Walker et al. (in prep.)

#### HNCO peak intensity (ACES)



Eventual goal is to decompose HNCO emission to obtain a full description of the PPV structure of the dense gas in the CMZ

(but this is very challenging! See talk by Rojita)

# CS/SO/CH<sub>3</sub>CHO peak intensity (ACES)



Hsieh et al. (in prep.)

# **ACES Early Science Results**

'M0.8-0.2 ring' Nonhebel et al. (2024)

- Large (~ 10 pc) ring like structure
- Mass ~  $10^6\,M_\odot$
- Kinetic energy ~ 10<sup>51</sup> erg
- Origin? Potentially a hypernova in a dense molecular cloud







- Millimeter Ultra-Broad-Line Object
- Compact (< 1") dust continuum source
- FWHM ~ 160 km/s
- Cold (~ 15 K)
- No detection at other wavelengths
- Origin? ... unknown.
- Potentially stellar merger or intermediate mass black hole, but not fully consistent

# **ACES Early Science Results**



emperature T (K)

#### ACES Data Release

- Release of ACES data is imminent (~ Autumn 2025) and will include:
  - Cubes for all 6 SPWs and 45 fields
  - Cubes of entire CMZ mosaic for ~ 15 molecular lines
  - 3mm continuum mosaic of entire CMZ
  - Advanced products (e.g. moment maps, PV maps, etc.)
- Will be accompanied by 5 papers (survey overview + 4 data papers)
- All code, issue tracking, etc., is publicly available at <u>github.com/ACES-CMZ</u>

ACES data reduction team

Adam Ginsburg, Ash Barnes, Dan Walker, Alyssa Bulatek, Nazar Budaiev, Claire Cook, Savannah Gramze, Pei-Ying Hsieh, Katharina Immer, Desmond Jeff, Eric Liang, Xunchuan Liu, Steve Longmore, Xing Lu, Xinyu Mai, Sergio Martin, Betsy Mills, Jaime Pineda, Marc Pound, Alvaro Sanchez-Monge, Qizhou Zhang ACES is a completely open collaboration

Get in touch if you're interested in joining!

