

The Cool CGM of Individual Galaxies

Huanian Zhang (张华年)

Huazhong University of Science and Technology

07/07/2025 (a) Durham University

Circumgalactic Medium (CGM)

The Two Most Important Questions in Galaxy:

- 1. How the gas cool and feed the star formation (SF)?
- 2. How the SF activity terminates, namely quenching?

Tumlinson et al, 2017

How to detect CGM?

Absorption Detection

Flux

Credit to Muzahid

Stacked composite spectra for CGM emission

1. \sim 500,000 target galaxies

 \mathbf{C}

СU'

CIM

erg

20

- 2. $10^9 < M_*/M_\odot < 10^{11.5}$
- 3. 0.02 < z < 0.2
- 4. 8,000,000 pairs at $r_p < 2$ Mpc

Shaded region: Velocity window ~ ±275 km/s

Zhang et al. 2016, $r_p < 50$ kpc

Emission detection, 2016, 2018a

Ionization states, 2018b, 2022, 2024

Environ dependence, 2019

Cooling inflow and outflow, 2021

Mass dependence, 2020a 5

CGM Mapping using Keck

-5°01'40"

40"

- Blue compact dwarf galaxy. 1.
- 2. $M_* = 6 \times 10^6 M_{\odot}$ 02'00"
- Galaxy extension ~ 500 pc. 3.
- 20" At z = 0.013524.
- Distance = 58.42 Mpc5.
- Angular scale ~ 276 pc / " 6.

 $H\alpha$ narrow-band image, width 2.5A 03'00"

Herenz et al. 2023

CGM Mapping using KCWI Data

Starburst galaxy at z = 0.01911, $M_* \sim 10^{10.0} M_{\odot}$, SFR ~ 12.1 M_{\odot}/y 1.

Nielsen et al. 2024

CGM Mapping using MUSE Data

Interacting galaxies at z = 1.284, $M_* \sim 10^{10.5} M_{\odot}$, SFR $\sim 10 M_{\odot}/\text{yr}$

12Å [OII] narrow-band image, extends to \sim 130 physical kpc, and velocity field. 2.

2. 8Å H α (left) and H β (right) narrow-band image, extends to ~ 17 kpc, ~ 0.25 $r_{\rm vir}$.

1. 72 galaxies with FOV > 5 R_e of the galaxy, R_e is the half light radius of the galaxy.

2. O32 could be used to estimate the ionizing photon escape fraction.

- $H\alpha$ flux correlation with 1. M_* , SFR, sSFR at 5 R_e (top) and 10 R_e (bottom)
- Red for detections 2.
- Magenta for non-detection 3.

11

- Comparison to GAEA 1. (SAM) and TNG (Hydro)
- Cool gas surface density as 2. a function of M_* , SFR, sSFR at 5 R_{ρ} and 10 R_{ρ}
- Not a direct comparison to 3. our observations

Summary

- We are able to detection the inner cool CGM of individual galaxies.
- The radial profile has a turnover point at (1-2) R_{ρ} and the nature diverges at 3 R_{ρ}
- H α flux correlate well with galaxy's SFR, but not with its M_* .
- Comparison to GAEA and TNG, indicating the different sub-grid physics.

