

Rubin Observatory Data Preview 1

James Mullaney The University of Sheffield

UK Research

- Lecturer in Extragalactic Astrophysics.
- Since April 2023: LSST:UK's Processing Scientist (50% role). Duties:
 - Quality check data off the telescope and during and after processing;
 - Work with the Data Management team to contribute to the data processing pipelines:
 - Improvements;
 - New Features
 - Bug fixing
 - Was checking data during and after the LSSTComCam observing campaign.
 - Wrote a chunk of the DP1 Data Release paper.

- What Data Preview 1 is and isn't.
- What Data Preview 1 contains.
- How to access Data Preview 1.

In-prep DP1 release paper: https://rtn-095.lsst.io/

Data Preview 1:

- First on-sky data from the Rubin Observatory to be released for research;
- Was obtained using Rubin's **Commissioning Camera** (ComCam);
 - Same size, weight, detector type, filter complement etc. as the full camara, but containing only **9 detectors, instead of 189**.
 - Used to optically align the Simonyi Telescope and verify it can deliver the required data quality.
- Was obtained during the **48 nights** spanning 24th October 11th December, 2024.

It is not:

- The data that was shown during the "First Light" event.
- *Exactly* what we expect for full Data Releases.

DP1 contains data derived from 1792 30s ComCam exposures.

Each exposure resulted in up to 9 raw images (and almost all did result in 9).

Number of raw detector images per field and band:

Field Code	0	Total					
	u	g	r	i	\mathbf{Z}	у	
47_Tuc	54	90	288	171	0	45	648
ECDFS	387	2070	2133	1455	1377	270	7692
$EDFS_comcam$	180	549	783	378	378	180	2448
$Fornax_dSph$	0	45	225	108	0	0	378
$Rubin_SV_095\25$	297	738	756	207	540	90	2628
$Rubin_{SV_{38_{7}}}$	0	396	360	495	180	0	1431
Seagull	90	333	387	0	90	0	900
Total	1008	4221	4932	2814	2565	585	16125

Data in DP1 fall under five different broad types:

Images

Science Data Products

- Catalogues
- Maps
- Ancillary Data Products Aid investigation
- Metadata

Details of full contents at: https://dp1.lsst.io/

- raw: Images directly from the camera, before any processing.
- visit_image: Processed & calibrated single epoch images (science, var, mask). They are the lowest-level "scientifically useful" images.
- deep_coadd: Product of coadding visit_images taken with the same filter.
 Selected to have PSF FWHM < 1.7 arcsec.
- template_coadd: Used to make difference_images.
 The third of visit_images with the best seeing are selected.
- difference_image: From subtracting template_coadds from visit_images. They show what has changed in flux.

- All processed images contain a mask plane.
 - Provides information about each pixel. Is it associated with a detection, a cosmic ray, a bad pixel....?
 - Make sure you understand and refer to the mask plane if you're working with image data.
- Particularly applies to coadds:
 - Many coadds only have partial coverage.
 - Regions without coverage don't necessarily contain - for example - zeros or NaNs.
 - But they are indicated with the NO_DATA pixel mask.
 - Ignore the mask planes at your peril!!!

- <u>Source</u>: Deblended 5-sig detections in visit_images. (46M sources)
- <u>Object</u>: Deblended 5-sig detections in deep_coadds. (2.3M objects)
- <u>ForcedSource</u>: Forced PSF photometry at object locations (269M entries)
- DiaSource: 5-sig detections in difference_images. (3.1M diaSources)
- DiaObject: Objects that diaSources are associated with. (1.1M diaObjects)
- ForcedSourceOnDiaObject: Forced PSF photometry at diaObject locations (197M)

Solar System:

- SSSource: DiaSources that are associated with known Solar System objects (5598)
- SSObject: Mapping between Rubin SS Object ID and the IAU designation.

Non-science/not-from-observations:

- <u>CcdVisit</u>: Information about the exposures. Pointing, PSF, etc. (16071 entries)
- <u>Calibration</u>: The catalogue used for astrom. and photom. calibration.

Catalogue Health Warnings!

Flags:

- Catalogues also contain flags.
- Indicate whether a detection/measurement is associated with a bad pixel, poorly-defined PSF etc.
- Make sure you understand and exclude appropriately flagged sources.

e.g., ~base_psfFlux_Flag.

Lightcurves:

For lightcurves, we strongly recommend using the psfDiffFlux column in ForcedSource.

Maps are non-science-level images. Examples include:

Metadata: visit table contains data for each exposure.

Differs from ccdVisit: per exposure, as opposed to per exposure-detector.

Ancillary Data Products:

- Config files: So users can know how the pipeline was configured.
- *log and metadata files*: Produced during processing, allows users to check why a certain processing failed, for example.
- *calibration data products*: Bias, flats, darks, brighter-fatter kernels, charge transfer inefficiencies...
- whole system bandpass throughputs...

Table 1. Median 5σ coadd detection limits per field and band.

	Field Code	Band							
	47_Tuc	u	g	r	i	\mathbf{Z}	У		
non	47_Tuc	-	24.03	24.24	23.90	-2	21.79		
3.	ECDFS	24.55	26.18	25.96	25.71	25.07	23.10		
	$EDFS_comcam$	23.42	25.77	25.72	25.17	24.47	23.14		
	$Fornas_dSph$	-	24.53	25.07	24.64	-	-		
	$Rubin_SV_09525$	24.29	25.46	24.95	24.86	24.32	22.68		
	$Rubin_SV_{38_7}$	-	25.46	25.15	24.86	23.52	-		
	Seagull	23.51	24.72	24.19	-	23.30	-		
	10-yr depth	26.1	27.4	27.5	26.8	26.1	24.9		

Vera C. Rubin Observatory | National Astronomy Meeting | Durham, UK; 7 July 2025

Photometry checks

Astrometry checks

ECDFS astrometric residuals

SSObject astrometric residuals

Vera C. Rubin Observatory | National Astronomy Meeting | Durham, UK; 7 July 2025

DP1 data is available **now** to Data Rights holders. Access is via https://data.lsst.cloud:

DP1 data is available **now** to Data Rights holders. Access is via https://data.lsst.cloud:

- Query the same tables as the Portal Aspect, but in a notebook setting.
- It's the recommended way of programmatically accessing table data.
- ADQL SQL with astronomy features queries *all* objects, source etc. at once.
- Once searched-for and retrieved, data can be manipulated and analysed.
- It is faster but less feature-rich and flexible than using the Data Butler.

- Use the Data Butler to retrieve pixel-level data for analysis.
- But it can retrieve table data, too.
- It's very powerful and feature-rich.
- Is more flexible than TAP, but less efficient for querying table data.
- Can be used to acquire broader types of information, such as tract and patch information.

Video of accessing a coadd via the Data Butler

Using the Data Butler to retrieve an image

Import necessary modules and set up plotting

```
[]: import lsst.daf.butler as dafButler
import matplotlib.pyplot as plt
import lsst.afw.display as afwDisplay
afwDisplay.setDefaultBackend('matplotlib')
plt.rcParams['figure.figsize'] = (8.0, 8.0)
def plotImage(image, favPx=None):
  fig = plt.figure()
  display = afwDisplay.Display(frame=fig)
  display.scale('asinh','zscale')
  display.mtv(image)
  if favPx is not None:
      display.dot('o', favPx[0], favPx[1], size=100, ctype='orange')
```

Set up the Data Butler

```
[ ]: butler = dafButler.Butler('dp1', collections=['LSSTComCam/DP1'])
  registry = butler.registry
```

Retrieve the coadd image data...

- Data Preview 1 was made available to Data Rights holders on the 30th Nov 2025.
- DP1 is the first science-grade data to be released by the Rubin Observatory.
- It contains data from the ComCam campaign: 48 nights, 7 fields, 15 sq. deg.
- Excellent data quality in terms of photometry, astrometry, PSF, colours.
 - But we can't check *everything* so we want to hear from the community.
- There are multiple ways to explore the data:
 - Portal Aspect to visualise images and catalogs;
 - Notebook Aspect to manipulate and analyse data:
 - TAP for straightforward catalogue searches;
 - Butler for image and more complex catalogue searches.
- Go Forth and Discover Stuff!!