Energetics of Intracluster Stars and Dark Matter

- J. Butler¹, G. Martin¹, N. Hatch¹, F. Pearce¹, S. Brough², Y. Dubois³
- 1. University of Nottingham
- 2. University of New South Wales
- 3. Institut d'Astrophysique de Paris

Based on the paper "Intracluster light is a biased tracer of the dark matter distribution in clusters" (Butler+25).

Intracluster Light: A Dark Matter Tracer?

- Intracluster stars and dark matter (DM) are both collisionless, so dynamics governed by cluster potential.
- Orbital properties must be compared to understand how these components are related.

Alonso Asensio+ 2020

Montes & Trujillo 2019

Simulation

- 12 clusters from Horizon-AGN, a cosmological hydrodynamic simulation.
- BCG & ICL separation at 100 kpc.

$L_{ m box} \ M_{ m DM,res}$	$100 h^{-1} { m Mpc}$ $8 imes 10^7 { m M}_{\odot}$
$M_{ m gas,res} \ M_{ m star,res} \ M_{ m cluster}$	$1 \times 10^7 \mathrm{M}_{\odot}$ $2 \times 10^6 \mathrm{M}_{\odot}$ $1 - 4 \times 10^{14} \mathrm{M}_{\odot}^{[1]}$

[1] The two most massive clusters in Horizon-AGN are excluded from this study, and thus are not included in this range.

Specific Energy =
$$\frac{v^2}{2} + (\phi - \phi_{min})$$

Specific Energy =
$$\frac{v^2}{2} + (\phi - \phi_{min})$$

 Orbital energies of intracluster stars are ~25% lower than the DM and the shapes of the distributions are very different.

 Orbital energies of intracluster stars are ~25% lower than the DM and the shapes of the distributions are very different.

 Orbital energies of intracluster stars are ~25% lower than the DM and the shapes of the distributions are very different.

Anisotropy

$$\beta(r) = 1 - \frac{\sigma_{\theta}(r)^2 + \sigma_{\phi}(r)^2}{2 \sigma_{r}(r)^2}$$

- β = 1: Radial orbits
- β = 0: Isotropic orbits
- β -> - ∞ : Circular orbits
- Galaxy and DM profiles similar.
- ICL more radially biased.

Most tidal stripping occurs at pericentre.

- Most tidal stripping occurs at pericentre.
- Tidal stripping more efficient at smaller pericentric distances.

- Most tidal stripping occurs at pericentre.
- Tidal stripping more efficient at smaller pericentric distances.
- Pericentric distance minimised for low energy and radial orbits.

- Most tidal stripping occurs at pericentre.
- Tidal stripping more efficient at smaller pericentric distances.
- Pericentric distance minimised for low energy and radial orbits.
- Could lead to biases in orbital properties of stripped material.

- Most tidal stripping occurs at pericentre.
- Tidal stripping more efficient at smaller pericentric distances.
- Pericentric distance minimised for low energy and radial orbits.
- Could lead to biases in orbital properties of stripped material.
- Stars are more tightly bound than dark matter in subhaloes -> biases less prominent for dark matter.

Why is this important?

- ICL is not an unbiased proxy for the DM distribution.
- Need to understand the processes that produce the intracluster stars and the origin of these differences with the DM.

