Unveiling the Prompt Emission Mechanisms of Gamma-Ray Bursts: A Spectro-polarimetric perspective with *Fermi* and *AstroSat*

> By Rahul Gupta*

> > **NASA GSFC**

NAM 2025, July 10, 2025

In collaboration with: A. R. Rao, Dipankar Bhattacharya, Tanmoy Chattopadhyay, Judith Racusin, Vidushi Sharma, Shabnam Iyyani, Soumya Gupta, Varun Bhalerao, Shashi B. Pandey, and A. J. Castro-Tirado

*rahulbhu.c157@gmail.com & rahul.gupta@nasa.gov

Gamma-Ray Burst: Radiation mechanisms?

Photospheric vs Synchrotron

Spectrum	Quasi-thermal	Non-thermal	
Spectral Shape	Hard Low-energy Slope (α)α = -2/3 in the slow-cooling and a the fast-cooling regime		
Light Curve	Smooth, single-peaked	Rapid variability and complex	
Energy Dissipation	~10^12 to 10^13 cm	~10^14 to 10^15 cm	
Jet Composition	Optically thick, baryonic dominated	ated Optically thin, magnetically dominated	
Polarization	Low or no polarization	High polarization	

Limitation: Degeneracy between spectral models

> 6000 GRBs in 30 years ! (BATSE, FERMI, SWIFT) Detailed spectroscopy for most of GRBs (bright)

Emission mechanism of prompt emission is still unknown!

Two Models: Two completely different spectral shape

lyyani et al. 2018

Constraining Observables: GRB polarimetry

VERES et al. 2024

AstroSat and X-ray Polarimetry with CZT-Imager (CZTI)

Launched in 28th September 2015. -Five science payloads onboard.

https://astrosat.iucaa.in/czti/grb

CZT-Imager (CZTI)

Compton scattering in one pixel and absorption of the scattered photon in another pixel constitute the 8 bin azimuthal angle distribution.

Aim: To measure the azimuthal distribution of scatter angles about the incident photon direction.

Polarization - 100 - 600 keV

Credit: CZTI team

Finally - GRB polarization for a 5 year sample

2015-2020

Shortlisted **20 GRBs** for polarization analysis

- bright
- localized
- <60 degree from detector normal

Results (100-600 keV, full burst)

- 1. Most GRBs are unpolarized in the full burst
- 2. 25 % of the sample polarized (50 70 %)
- 3. the total sample size is now more than 40

Chattopadhyay et al 2022, ApJ

Slightly higher polarization (around 20%) in Astrosat sample (100-600 keV) than POLAR (50-500 keV)

Changing PA across the burst ?

narrower sampling region at the higher energies (>100 keV) in case of AstroSat, less chance of mixing

Time-resolved spectro-polarimetric

THE ASTROPHYSICAL JOURNAL, 972:166 (32pp), 2024 September 10 © 2024. The Author(s). Published by the American Astronomical Society.

OPEN ACCESS

https://doi.org/10.3847/1538-4357/ad5a92

A Detailed Time-resolved and Energy-resolved Spectro-polarimetric Study of Bright Gamma-Ray Bursts Detected by AstroSat CZTI in Its First Year of Operation

Rahul Gupta^{1,2,16}, S. B. Pandey², S. Gupta^{3,4}, T. Chattopadhayay⁵, D. Bhattacharya⁶, V. Bhalerao⁷, A. J. Castro-Tirado^{8,9}, A. Valeev¹⁰, A. K. Ror², V. Sharma^{1,11,12}, J. Racusin¹, A. Aryan^{2,13}, S. Iyyani¹⁴, and S. Vadawale¹⁵, V. Starma^{1,11,12}, S. Vadawale¹⁵, S. Iyyani¹⁴, and S. Vadawale¹⁵, S. Vadawala¹⁵, S. Vadawala¹⁵, S. Vadawala¹⁵, S. Vadawala¹⁵, S.

GRB 160325A

First Pulse: Best fit Spectrum: Blackbody + Cutoff power law

Second Pulse: Best fit Spectrum: Cutoff power law

Physical scenario: Baryonic dominated jet with mild magnetisation

Gupta et al. 2024, ApJ & Sharma et al. 2020

First Emission Pulse

GRB 160821A

Gupta et al. 2024, ApJ & Sharma et al. 2021 ApJL

Optically thin Synchrotron

GRB 230307A: Evidence of transition from Baryonic to Poynting flux-dominated jet composition?

The brightest burst for which Spectro-polarimetry analysis has been attempted ever!

Gupta et al. 2025 (minor revision to A&A)

• Detailed spectro-polarimetric observations and analysis of bright GRBs using Fermi and AstroSat provide a valuable approach to constraining the radiation mechanisms of GRBs.

• Time-resolved spectro-polarimetry of the bright GRBs give hint of time-dependent nature of polarization properties...COSI mission?

- AstroSat will be the only GRB polarimeter till 2027 at least
 - 10 year GRB polarization catalogue in prep (2015-2025).

https://astrosat.iucaa.in/czti/

Thank you for your attention!

*rahul.gupta@nasa.gov

Backup Slides

Spectro-polarimetric results of CZTI GRBs

GRB 230307A: Evidence of transition from Baryonic to Poynting flux-dominated jet composition

Our study suggests that the jet composition of GRBs may exhibit a wide range of magnetization, which can be revealed by utilizing spectro-polarimetric investigations of the bright GRBs.

Sharma et al. 2019, 2020; Chand et al. 2018, 2019; Chattopadhyay et al. 2021, 2022; Gupta et al. 2022, 2024; S. Gupta et al. (in prep.)

Energy-resolved polarisation analysis using AstroSat CZTI

Energy sliding mode:

100-300 keV (sliding of 50 keV)

Hint of energy-dependent polarization ?

Gupta et al. 2024, ApJ

GRB name	Energy range (keV)	No. of Compton events	PF (%)	BF
GRB 160325A	100-187	391	< 70.54	1.41
GRB 160325A	187-600	380	< 33.28	0.80
GRB 160623A	100-300	1428	< 24.42	0.74
GRB 160623A	300-600	277	unconstrained	2.82
GRB 160703A	100-351	376	< 18.64	0.73
GRB 160703A	351-600	51	unconstrained	1.02
GRB 160802A	100-363	1360	< 27.92	0.70
GRB 160802A	363-600	152	< 69.97	0.69
GRB 160821A	100-300	2387	< 20.03	0.85
GRB 160821A	300-600	468	unconstrained	2.27