The COSMA supercomputer for computational cosmology

Alastair Basden, Peter Draper, Mark Lovell, Fawada Qaiser, Richard Regan, Paul Walker

Alastair Basden DiRAC / Durham University

University Institute for Computational Cosmology

Durham

COSMA

- The COSmology MAchine
 - In operation since 2001
 - Now in it's 8th generation (COSMA8)
 - COSMA5, 7, 8 all operational
 - ~80,000 cores
 - >0.75PB RAM
 - >20PB storage

Dirac

- Established 2009
- Provides HPC to the STFC theory community
 - Including astrophysics, cosmology, astronomy
- Three services:
 - Extreme Scaling: GPU workloads, Edinburgh (TURSA)
 - Data Intensive: Mixed workloads, Cambridge and Leicester
 - Memory Intensive: High RAM, Durham (COSMA)
- Co-designed and tailored for specific workloads

Bespoke design principles

- What does the science need to achieve?
- How can this be performed cost effectively?
 - A general purpose system would need to be much larger
- How can science outcomes be maximised?
- How can the lifetime CO2 be reduced?
- What will future requirements look like?

COSMA: Designed for cosmology

High RAM

- To store the universe
- Fast check-pointing storage
 - To rapidly dump the state of long running simulations
- Large bulk storage
 - To store generated universes for future analysis
- Tape storage
 - Energy efficient archival and backup
- Non-blocking network fabric
 - To reduce network latency and congestion

Net-zero

- HPC energy use is problematic
 - Embodied carbon even more so
 - Bespoke systems help to reduce this
 - We are making small steps
 - ~£1m solar panels
 - Quarterly user emails
 - Idle node power-off (COSMA5, DINE)
 - Maintain high resource usage
 - Energy efficient cooling DLC and Immersion
 - Mine water heat storage
- 2026 HPC Summer school focused on Net-zero for NETDrive: Durham

Hardware prototyping

- Key to advising on the adoption of new technologies
 - HPC Hardware Laboratory @ Durham
 - Providing researcher access to the latest novel technologies
 - CPU, GPU, networking, storage, composability, quantum, etc
 - Benchmarking and performance testing
 - Key questions: Will codes work, is there scope for performance improvement, is it cost-effective?

User facilities

13 . AV 0 14 15 . AV 0 16 17 . AV 0 18 19

- In addition to the main SLURM queues, COSMA includes:
 - Data analysis and login nodes
 - GPU sub-clusters
 - Database hosting facilities
 - EAGLE, VIRGO
 - Cloud-centric system coming soon
 - Primarily for IRIS

Data access

- Large datasets generated on the system need further analysis
 - On the system
 - Elsewhere
 - Data transfer enabled by several methods:
 - GLOBUS bulk file transfer
 - COSMA-hosted Cloud-sharing
 - VIRGO Database
 - EAGLE and Millennium datasets
 - Flamingo to follow
 - Online data reduction and download

The future

- DiRAC-4
 - Technical case well underway
 - Not yet funded should become clearer in the Autumn
 - Likely to include a 3PB RAM system:
 - COSMA9
- IRIS
 - Self-hosted Cloud system under development
- Hardware Lab
 - Continued investment

Conclusions

COSMA:

- Delivering cost-effective computational cosmology

Questions?