

The alignment of galaxies and AGN jets in the cosmic web

Speaker: Lyla Jung

In collaboration with

Imogen Whittam; Matt Jarvis; Catherine Hale; Madalina Tudorache; Tariq Yasin

Galaxy evolution in cosmological context

Dark matter

Galaxies

Gas

Image credit: MillenniumTNG (Pakmor+ 2023)

Galaxies in filaments grow by mergers/accretions along the direction of filaments

 \rightarrow Major axis of massive galaxies tend to be <u>parallel</u> to the filament orientation

See also: Lee et al. 2008; Zhang et al. 2009; Libeskind et al. 2014; Kang & Wang 2015; Morinaga & Ishiyama 2020

AGN feedback in massive galaxies

Throughout their evolution the SMBH at the core injects energy into the surrounding medium

- \rightarrow Regulate gas cooling and star formation
- → The direction of jets decides "where" the energy is injected

the Hubble Heritage Team (STScI/AURA)

Zooming into the small scale around the black hole

Secular accretion

: Angular momentum of the accreting medium is aligned with the galactic scale gas

Chaotic accretion

: Gas motion near the galactic nucleus is perturbed

Modified figure from Nayakshin+ 2012

(see also Battye & Browne 2009; Lagos+ 2011, Hobbs et al. 2011, Hopkins et al. 2012, Smethurst+ 2019; Zheng+ 2024 and others)

Alignment between galaxy major axis and cosmic filament

Alignment between galaxy major axis and cosmic filament

$0.0 < D_{fil} / Mpc \le 6.33 (N=6624)$
$6.33 < D_{fil} / Mpc \le 10.94 (N=6625)$
$10.94 < D_{fil} / Mpc \le 16.63 (N=6627)$
$16.63 < D_{fil} / Mpc \le 22.79 (N=6622)$
$22.79 < D_{fil} / Mpc \le 29.33 (N=6619)$
$29.33 < D_{fil} / Mpc \le 35.82 (N=6624)$
$35.82 < D_{fil} / Mpc \le 42.65 (N=6626)$
$42.65 < D_{fil} / Mpc \le 49.88 (N=6630)$
$49.88 < D_{fil} / Mpc \le 57.84 (N=6623)$
$57.84 < D_{fil} / Mpc \le 67.13 (N=6624)$
$67.13 < D_{fil} / Mpc \le 80.0 (N=6625)$

Alignment between galaxy major axis and cosmic filament

Alignment between galaxy major axis and radio jets

Alignment between galaxy major axis and radio jets

Outside cosmic filaments

Galaxy major axis – Filament : Random Galaxy major axis – Radio jet : Perpendicular

Secular SMBH accretion

Inside cosmic filaments

Galaxy major axis – Filament : Parallel

Galaxy major axis – Radio jet : (closer to) Random

Mergers along cosmic filament

Chaotic SMBH accretion

Implications

Cosmic filaments can generate intrinsic alignment between galaxies

Image credit: ESA

Cosmic filaments are less likely to generate alignment between <u>radio jets</u>

See also Taylor & Jagannathan 2016; Contigiani+ 2017; Osinga+ 2020; Panwar+ 2020; Simonte+ 2023

Azimuthal anisotropy in the circumgalactic medium around galaxies

We show that AGN jets are in general parallel to the galaxy's minor axis

This can heat the CGM predominantly along the minor axis direction

Azimuthal anisotropy in the quenched satellite distribution in groups/clusters

Accretion of pre-processed galaxies along filaments

We show that accretions in filament environments take place preferentially along the galaxy's major axis

This could create anisotropy in the pre-processed satellite distribution

See Huang+ 2016; Stott 2022; Ando+ 2023; Karp+ 2023; Stephenson+ 2024

Take home messages

offite ROYAL ASTRONOMICAL SOCIETY MNRAS **539**, 2362–2379 (2025) Advance Access publication 2025 April 12

On the relationship between the cosmic web and the alignment of galaxies and AGN jets

https://doi.org/10.1093/mnras/staf613

S. Lyla Jung¹⁰, ¹ X. H. Whittam¹⁰, ¹ M. J. Jarvis¹⁰, ¹, ² C. L. Hale¹⁰, ¹ M. N. Tudorache¹⁰ and T. Yasin¹⁰ ¹ ¹Sub-department of Astrophysics, Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK ²Department of Physics and Astronomy, University of the Western Cape, Robert Sobukwe Road, 7535 Bellville, Cape Town, South Africa

Accepted 2025 April 10. Received 2025 April 4; in original form 2025 February 5

- Massive galaxies in cosmic filaments grow by directional accretion & mergers
- Secular SMBH accretion mode is typical among massive radio galaxies with AGN jets
- Chaotic SMBH accretion mode is likely in galaxies in filament environments going through frequent mergers