

Constraining black hole spin in PG 1535+547 amidst complex multi-layered absorption

Athulya Madathil-Pottayil Dom Walton

Reflection Spectroscopy

X-ray Spectrum of an AGN

Reflection spectroscopy

Spin of the black hole

PG 1535+547 (a.k.a Mrk 486)

- Type I, radio-quiet AGN from the Palomar-Green Bright Quasar Survey (Schmidt & Green 1983)
- Black hole mass: $\sim 1.5 \times 10^7 \,\text{M}_{\odot}$ (Hu et al. 2021)
- X-ray Observations from:
 - 2002 (*XMM-Newton*)
 - 2006 (*XMM-Newton*)
 - 2016 (*XMM-Newton* + *NuSTAR*)
- Highly complex X-ray spectrum including clear changes in line-of-sight absorption (Schartel et al. 2005, Ballo et al. 2008)

PG 1535+547 (a.k.a Mrk 486)

Multi-epoch Simultaneous spectral fit

relativistic reflection + multiple layers of complex, time-dependent absorption along l.o.s

ztbabs(powerlaw+mekal+borus+(pcf \otimes tbfeo) × (pcf \otimes xstar₁) × xstar₂ × relxill(cp/lpcp)).

- Observed variability cannot be solely attributed to l.o.s absorption changes
- Intrinsic continuum variability is also evident

Partially covering neutral absorber, during 2002 and 2016.

- 2002: $N_{\rm H} \sim 3 \times 10^{22} \, {\rm cm}^{-2}$, $pcf \sim 80\%$
- 2006: $N_{\rm H} < 10^{20} {\rm ~cm^{-2}}$
- 2016: $N_{\rm H} \sim 5 \times 10^{23} \, {\rm cm}^{-2}$, $pcf \sim 50\%$

Light bending phenomenon in the reflection-dominated state

Epoch 1	Epoch 2
$\Gamma = 2.2 \pm 0.1$	$\Gamma = 2.2 \pm 0.1$
$h = 2.3 (+7.4, -0.4) r_{g}$	$h = 6.8 (+10.2, -2.1) r_{g}$
$R_{\rm frac} = 2.9 \ (+4.6, -2.2)$	$R_{\rm frac} = 0.6 \ (+0.3, -0.2)$

"Normal" reflection", $R_{frac} \sim 1$, within errors,

Epoch 3: Reflection-dominated state

- $R_{\text{frac}} > 7, h \le 1.72$ rg.
- Intrinsic flux dropped × 7 in 2–10 keV band from 2006 to 2016
- Variability primarily driven by changes in Comptonized intrinsic continuum
- Similar Reflection-dominated states seen in IRAS 13224-3809, Mrk 335, MCG-06-50-15

Consistent with "light-bending" (Miniutti & Fabian 2004): requires a rapidly spinning black hole and an extremely compact x-ray source very close to the BH

Spin of the black hole in PG 1535+547

- Spin constrained to a value of *a** > 0.9 for PG 1535+547.
- Broadband (XMM + NuSTAR) data in 2016 reflection-dominated state, plus joint 2002+2016 fit, allowed spin constraints despite complex l.o.s. obscuration.
- A spin of $a^* > 0.9$ for $M_{BH} = 1.5 \times 10^7 M_{\odot}$: a steady, radiatively-efficient accretion history for the black hole in PG 1535+547.

Conclusions

PG 1535+547 exhibits strong spectral variability across all epochs.

Spectra explained by relativistic reflection + multiple layers of complex absorption along the line of sight.

Broadband XMM + NuSTAR coverage and simultaneous multi-epoch fitting enabled robust constraints, despite complex obscuration.

Primary continuum: $\Gamma \sim 2.2$ - 2.4

2016 : Reflection-dominated, with $R_{\rm frac} > 7$, $h < 1.72 r_{\rm g}$

- Flux drop ×7, consistent with light-bending scenario
- Spin constraints: Rapidly rotating black hole, $a^* > 0.9$

Neutral obscurer (partial): Detected in 2002 & 2016, $N_{\rm H} \sim 3 - 50 \text{ x} 10^{22} \text{ cm}^{-2}$, variable covering

$log(M_{BH}\dot{m}^2)$ - $log(n_e)$ plane

- PG 1535+547 tested against the proposed anti-correlation between $\log(M_{BH}\dot{m}^2)$ - $\log(n_e)$ in a radiation-pressure-dominated disc, as proposed by Svensson & Zdziarski (1994).
- For $\dot{m} = 1.05$, $\log(M_{BH}\dot{m}^2) \sim 7.2$
- PG 1535+547 lies within the distribution the comparison sample of 31 Type I AGN.
- PG 1535+547 sits above 'f = 0.7', indicating that more than 70% of the disc's accretion power is dissipated into the corona.

Table 1. Best-fitting parameters obtained from the simultaneous and the broad-band analysis of XMM–Newton + NuSTAR data of PG 1535 using the broken emissivity reflection model (relxillCP) and the lamppost models (relxilllpcp): $(zTBabs \times TBabs(powerlaw + mekal + borus + (partcov \otimes TBfeo) \times xstar \times (partcov \otimes xstar) \times relxillCp/relxilllpcp))$. All errors are quoted at 90% confidence level.

Model	Parameters	2002		2006		2016	
		relxillCP	relxilllpcp	relxillCP	relxilllpcp	relxillCP	relxilllpcp
ztbabs	$N_{\rm H}~(\times 10^{22} cm^{-2})$	$0.10\substack{+0.01 \\ -0.01}$	$0.09^{+0.01}_{-0.01}$	$= ztbabs_{2002}$		$= ztbabs_{2002}$	
scattered PL	Norm (×10 ⁻⁶)	$5.77^{+1.16}_{-1.66}$	$7.75^{+1.03}_{-1.54}$	$= scPL_{2002}$		$= scPL_{2002}$	
mekal	kT _e (keV) Norm (×10 ⁻⁶)	$\begin{array}{c} 0.57\substack{+0.05\\-0.05}\\ 0.41\substack{+0.08\\-0.08} \end{array}$	$0.69^{+0.05}_{-0.06} \\ 1.17^{+0.26}_{-10.24}$	$= mekal_{2002}$		$= mekal_{2002}$	
Borus	log N _H (cm ⁻²) C factor	> 24.29 0.72	> 23.21 0.86	$= Borus_{2002}$		$= Borus_{2002}$	
partcov tbfeo	pcf $N_{\rm H}~(\times 10^{22} {\rm cm}^{-2})$	$\begin{array}{c} 0.85\substack{+0.04\\-0.08}\\ 6.79\substack{+1.20\\-1.69} \end{array}$	$0.85^{+0.07}_{-0.07} \\ 2.14^{+1.02}_{-0.64}$			$\begin{array}{r} 0.59\substack{+0.04\\-0.23}\\ 30.56\substack{+14.26\\-10.93}\end{array}$	$\begin{array}{r} 0.50\substack{+0.13\\-0.07}\\ 55.55\substack{+29.00\\-17.24}\end{array}$
xstar	$\begin{array}{l} N_{\rm H}~(\times 10^{22} {\rm cm}^{-2})\\ \log~{\cal E}~({\rm erg~cm~s}^{-1})\\ A_{\rm O}~({\rm solar})\\ z \end{array}$	$\begin{array}{r} 3.98^{+1.49}_{-0.74}\\ 1.80^{+0.01}_{-0.02}\\ 1.95^{+0.66}_{-0.11}\\ 0.030^{+0.007}_{-0.008}\end{array}$	$\begin{array}{r}2.53\substack{+0.08\\-0.29}\\1.80\substack{+0.02\\-0.01}\\3.16\substack{+0.17\\-0.10}\\0.020\substack{+0.003\\-0.005}\end{array}$	$= x star_{2002}$		= xstar ₂₀₀₂	
partcov xstar	cvr.fr. $N_{\rm H} (\times 10^{22} {\rm cm}^{-2})$ $\log \xi ({\rm erg \ cm \ s}^{-1})$ z	$\begin{array}{c} 0.79\substack{+0.02\\-0.02}\\ 5.93\substack{+3.68\\-1.13}\\<0.90\\>0.027\end{array}$	$\begin{array}{c} 0.80 \substack{+0.02 \\ -0.01 \\ 9.89 \substack{+0.82 \\ -0.14 \\ 1.84 \substack{+0.06 \\ -0.07 \\ > 0.033 \end{array}}$	$= partcov_{2002}$ $= xstar_{2002}$		$= partcov_{2002}$ $= xstar_{2002}$	
Reflection model	$\label{eq:rescaled_states} \begin{split} & \Gamma \\ & \log \xi \; (\mathrm{erg} \; \mathrm{cm} \; \mathrm{s}^{-1}) \\ & \mathrm{h} \; (\mathrm{R}_{\mathrm{ISCO}}) \\ & \mathrm{q}_{\mathrm{in}} \\ & \mathrm{R}_{\mathrm{br}} \; (\mathrm{R}_{\mathrm{ISCO}}) \\ & \mathrm{R} \\ & \mathrm{a}^* \\ & \mathrm{i} \; (\mathrm{deg}) \\ & \mathrm{kT}_{\mathrm{e}} \; (\mathrm{keV}) \\ & \log \; (n_e/cm^{-3}) \\ & \mathrm{A}_{\mathrm{Fe}} \; (\mathrm{solar}) \\ & \mathrm{Norm} \; (\times 10^{-5}) \end{split}$	$\begin{array}{c} 2.23 \substack{+0.15 \\ -0.05 \\ -0.09 \\ -0.48 \end{array} \\ 0$	$\begin{array}{c} 2.21 \substack{+0.08 \\ -0.05 \\ 2.44 \substack{+0.15 \\ -0.05 \\ -0.36 \end{array}} \\ 2.25 \substack{+7.37 \\ -0.36 \end{array} \\ \hline \\ 2.94 \substack{+4.63 \\ -2.17 \\ > 0.993 \\ < 29.12 \\ > 52.64 \\ 18.95 \substack{+0.09 \\ -0.13 \\ 3.16 \substack{+0.26 \\ -0.19 \\ 13.5 \substack{+7.63 \\ -8.10 \end{array}} \end{array}$	$\begin{array}{c} 2.23 \substack{+0.15 \\ -0.05 \\ 0.99 \substack{+0.09 \\ -0.48 \\ -0.48 \\ -0.55 \\ < 2.13 \\ 0.79 \substack{+0.40 \\ -0.36 \\ \end{array}}$	$\begin{array}{c} 2.21^{+0.08*}_{-0.05} \\ 2.44^{+0.07*}_{-0.06} \\ < 1.72 \\ \hline \\ 0.64^{+0.26}_{-0.25} \end{array}$	$\begin{array}{c} 1.90^{+0.08}_{-0.13}\\ 1.29^{+0.15}_{-0.18}\\ \hline \\ 6.30^{+1.70}_{-1.72}\\ > 5.96\\ > 4.39\\ \end{array}$	$2.40^{+0.04}_{-0.06}$ < 0.69 6.77^{+10.24}_{-2.10}
cflux	log(flux)	-	-				
χ^2 /d.o.f		1275.4/1140	1272.5/1143				

Warm Absorbers & Neutral Obscuration

- Complex, multi-layered absorption along the line-of-sight, characterized by
 - Partially covering Warm Absorber (WA₁)+
 - fully covering Warm Absorber (WA₂)
- $N_{\rm H}({\rm WA}_1) \sim 1 \times 10^{23} \,{\rm cm}^{-2}$, log ξ (erg cm s⁻¹) ~ 1.8 , $pcf \sim 0.8$, $v_{\rm WA1} < 1450 \,{\rm km} \,{\rm s}^{-1}$
- $N_{\rm H}({\rm WA}_2) \sim 3 \times 10^{22} {\rm ~cm}^{-2}$, similar ionization state to ${\rm WA}_1$, $v_{\rm WA2} \sim 5000 {\rm ~km~s}^{-1}$

- Partially covering neutral absorber, during 2002 and 2016.
 - 2002: $N_{\rm H} \sim 3 \times 10^{22} \,{\rm cm}^{-2}$, $pcf \sim 80\%$
 - 2016: $N_{\rm H} \sim 5 \times 10^{23} \, {\rm cm}^{-2}$, $pcf \sim 80\%$