

Streamlining Galaxy Cluster X-ray Analysis with XGA and DAXA

An introduction to the software, and some initial results

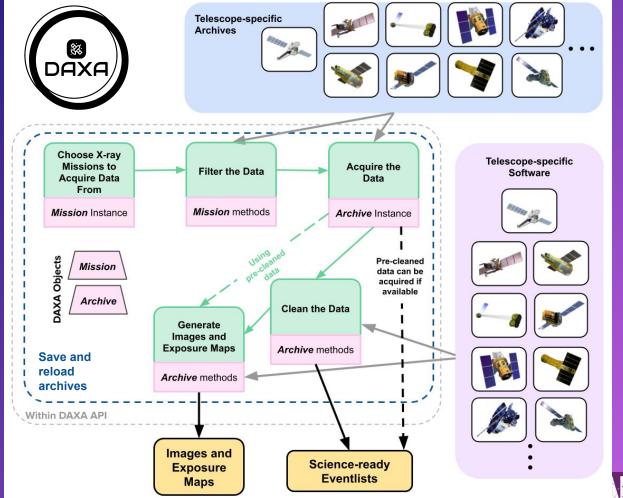
Supervisors: Kathy Romer, David Turner, Paul Giles Jessica Pilling

Introducing XGA and DAXA

- ☐ Big thank you to David Turner
- XGA and DAXA are both:
 - Open source Python modules
 - Fully documented
 - Provide a consistent interface for interaction with telescope specific software
- For completely transparent and reproducible science
- Making X-ray astronomy accessible to non-experts

Introducing XGA and DAXA

Acquiring and Cleaning


Generation and Analysis

Multi-mission dataset

DAXA - Democratising Archival X-ray Astronomy


```
import daxa
from daxa.mission import XMMPointed, Chandra, NuSTARPointed
from astropy.coordinates import SkyCoord
```

```
# Coordinates for a source we want to acquire data for
gx_coords = SkyCoord(186.6565, -62.7704, frame='fk5', unit=deg)

# X-ray missions we want data from
xt = XMMPointed()
nt = NuSTARPointed()
ct = Chandra()
```

```
nt.filter_on_positions(gx_coords, Quantity(30, 'arcmin'))
ct.filter_on_positions(gx_coords, Quantity(30, 'arcmin'))
xt.filter_on_positions(gx_coords, Quantity(30, 'arcmin'))
```

Searching for observations at a position in the sky by XMM, NuStar, and Chandra

Declare a Source (or Sample)

Generate Products from Source

→

Analyse Products

User Interface (Python)

Upon initial setup:

Provide science ready archive of eventlists

Optionally provide region files

Instantiate a Source object using the source's coordinates

Generate:

- Images
- Exposure Maps
- Ratemaps
- Spectra
- Lightcurves

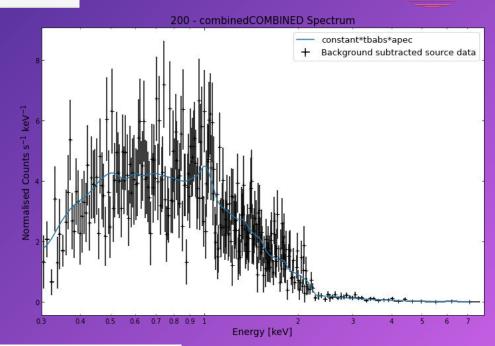
View and Plot products

- Count rates
- Fit models to spectra
- Temperature and luminosities
- Gas density, surface brightness, and hydrostatic mass profiles
 And more!


```
from astropy.units import Quantity
import xga
from xga.sources import GalaxyCluster
from xga.generate.esass.phot import evtool_image
from xga.xspec import single_temp_apec
```

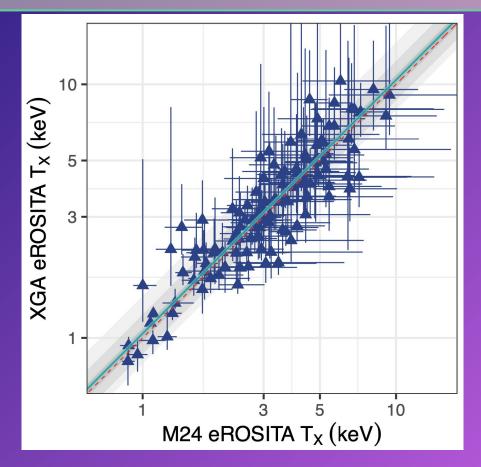
evtool_image(src, combine_obs=True)

```
im = src.get_combined_images(telescope='erosita')
mask = src.get_custom_mask(src.r500, remove_interlopers=False, telescope='erosita')
im.view(mask=mask, zoom_in=True)
```

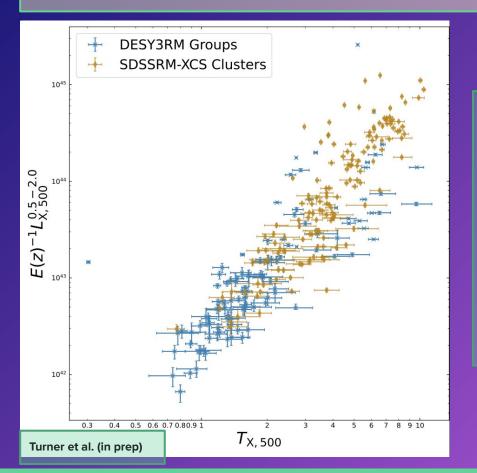


single_temp_apec(src, 'r500', stacked_spectra=True)

src.get_temperature('r500', 'erosita')


[4.05107, 0.37065881, 0.44978493] keV

src.get_combined_spectra('r500', telescope='erosita').view()



- DES Y3 redMaPPer selected clusters richness ≤ 20
- These tend to get discounted
- XMM measured Luminosities and Temperatures
- Relation seems to agree with previous cluster sample

Future Plans

- Add NuSTAR and Chandra
- Docker environment
- Version 1 release

Add data cleaning for other telescopes

- Pilling et al. (in prep)

Visit https://qithub.com/DavidT3 for the repositories, and links to tutorials.

Contact David at: turne540@msu.edu or Jessica at: J.Pilling@sussex.ac.uk

Join our Slack:

https://join.slack.com/t/xgadaxadeveloperteam/shared_invite/zt-38um26mth-kzbPymXLc_9FQ77jBAv2Yw

