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towards differentiable magnetohydrodynamics on exascale hardware
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Features of jf1uids

 differentiable, GPU-ready fluid simulator
written in JAX

* inherently divergence free approach to
MHD (based on (Pang and Wu, 2024))

* novel (near-)energy-conserving scheme
for self-gravity stable at discontinuities

* conservative geometric formulation for
radially symmetric problems

* physics modules in development: stellar
wind, cosmic rays, cooling, ...

* fully open source




there is not differentiable, GPU-ready MHD code yet
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Why (automatic) differentiability?

nrnntiniiniic ndinint mMmothnAd
CUINtimuuuo dujuinitiiiouaiou

calculate gradients through the simulator, based on the

differentiability of the building blocks provided by the numerical
framework = reverse-mode autodiff

* inverse modeling by optimization
* improved simulation-based inference

(Zeghal et al., 2022; Holzschuh et Thuerey, 2024))
* corrector in the loop (Um et. al, 2021)



Case Study I:
Recovering
Physical
Parameters

loss landscape
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radial 1d stellar wind simulation

aim: retrieve stellar mass and terminal
wind velocity from the simulation output



Case Study lI: MHD with Corrector in the Loop

P, Vx, Vy, Bx, By, B4, p

\ no added divergence

fluid state: 7xNxN divcurlA = 0 corrector: 7xNxN

\

apply curl
differential
operator to

the components
added to the
magnetic field

Convolutional
Neural =)
Network

correction step after every timestep: fluid state = fluid state 4+ dt corrector

Only if we train through the differentiable simulator, can the corrector account for the simulator-corrector interaction!
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to do: learn general MHD corrector, here only problem-specific from 5122
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Interesting Numerics |: Divergence Free MHD

ldea: Split MHD equations into a coupled

, ) finite difference magnetic update
hydrodynamic and magnetic system.

(self-consistently also evolves the

At At gas velocity field (and energy)):
n+l1 _ c2 2 yIn Lorentz force
— o o
U S S S U S {patv = —B X curl B,
B —_
magnetlc d:B = curl(v X B),
implicit System!, if it holds: divcurl...=0 [

hydro = (B, v), implicit 2nd order scheme,

flxed point iteration

divcurl...=0 \

n n+1
Rt = RD + AtW (R +2R )

based on Pang and Wu, 2024 in practice only a few iterations



Interesting Numerics ll: Improved Self-Gravity

Which flux is moving in the field, how to

subtract energy?
Density at time 0.00

a) use the centered fluxes (e.g. in Pluto) —
problem: energy not conserved because
the cell centered bulk fluxes are not the
actual Riemann fluxes moved in the
potential

b) use the Riemann fluxes for the energy
update (as used in ATHENA) — problem in
the standard approach: both cells do half
of the work irrespecive of their energy
content, leading to negative pressures at
discontinuities

our novel approach: only the cell the net flux is coming from ' ' ' ' X
pays with its energy (or do a more advanced split of the
Riemann flux)



N = cells per dimension Resolution Study for Evrard's Collapse
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Execution time in s

Preliminary Scaling Results

on simpler test code tinyfluids (https://github.com/leo1200/tinyfluids)
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