National Astronomy Meeting | White Dwarf Parallel Session | 11/7/2025

A different perspective: How the choice of disc model affects the interpretation of polluted white dwarfs



European Research Council Established by the European Commission



Mairi O'Brien | University of Warwick

DEPARTMENT OF PHYSICS

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS 539, 171–184 (2025) Advance Access publication 2025 March 8 https://doi.org/10.1093/mnras/staf398

# Characterizing planetary material accreted by cool helium-atmosphere white dwarfs using an exponentially decaying disc model

Mairi W. O'Brien<sup>®</sup>,<sup>1</sup>★ Pier-Emmanuel Tremblay,<sup>1</sup> Beth L. Klein,<sup>2</sup> Carl Melis,<sup>3</sup> Detlev Koester<sup>®</sup>,<sup>4</sup> Andrew M. Buchan<sup>®</sup>,<sup>1</sup> Dimitri Veras<sup>®</sup>1,<sup>5,6</sup> and Alexandra E. Doyle<sup>7</sup> <sup>1</sup>Department of Physics, University of Warwick, Coventry CV4 7AL, UK <sup>2</sup>Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1562, USA <sup>3</sup>Department of Astronomy & Astrophysics, University of California, San Diego, CA 92093-0424, USA <sup>4</sup>Institut für Theoretische Physik und Astrophysik, University of Kiel, D-24098 Kiel, Germany <sup>5</sup>Centre for Exoplanets and Habitability, University of Warwick, Coventry CV4 7AL, UK <sup>6</sup>Centre for Space Domain Awareness, University of Warwick, Coventry CV4 7AL, UK

Accepted 2025 March 7. Received 2025 February 28; in original form 2025 February 10



# **Polluted white dwarfs**

Spectrum of 7000 K He-atmosphere WD Spectrum of 7000 K He-atmosphere WD (polluted)





## **Accretion scenarios**

#### **1.** Constant accretion rate

 Accretion disc is constantly replenished

Accretion process can reach a **steady state** material sinks as fast as it enters atmosphere 2. Exponentially decaying accretion rate

 Accretion disc is not replenished

• Complex relationship between accretion rate and sinking rate

Jura et al. (2009)

## **Accretion scenarios**



Scenarios **diverge** most notably for cool, He-atmosphere white dwarfs

## The white dwarfs



WDJ 1927-0355

WDJ 2141-3300



# Method

Fitted **model atmospheres** to high-resolution (HIRES) spectra of **two** cool, He-atmosphere polluted white dwarfs

Determined **masses** of metals in the convection zone of the white dwarf at the time of observation



# Method

 Propagated masses of metals through exponentially decaying disc model

 Compared inferred masses of metals in parent body to common solar system objects

## **Results:** WDJ 1927-0355



 Best-matching with bulk Earth and chondrite compositions

Two free parameters degenerate over contour plot

# **Results:** WDJ 1927-0355



| Composition |               | Minimum $\chi^2_{\nu}$<br>WD J1927–0355 |
|-------------|---------------|-----------------------------------------|
| Bulk Earth  |               | 0.8                                     |
| Earth crust |               | 65.2                                    |
| Chondrites  | С             | 1.9                                     |
|             | Е             | 2.8                                     |
|             | Н             | 2.0                                     |
|             | L             | 2.8                                     |
|             | LL            | 3.2                                     |
| Achondrites | Aubrites      | 51.9                                    |
|             | Brachinites   | 3.9                                     |
|             | Diogenites    | 32.1                                    |
|             | Eucrites      | 63.2                                    |
|             | Howardites    | 31.5                                    |
|             | Urelites      | 9.9                                     |
| Stony-iron  | Mesosiderites | 9.4                                     |
|             | Pallasites    | 18.3                                    |

#### **Results:** WDJ 2141-3300



 Best-matching with bulk Earth and chondrite compositions

Two free parameters **degenerate** over contour plot

## **Results:** WDJ 2141-3300



#### **Results:** Constant accretion rate model



Best-matching compositions chondrites/bulk Earth, steady state, worse  $\chi_2$ 

The exponentially decaying disc model provides **better-matching solutions** for our two white dwarfs

It also enables us to provide a **mass range** of the parent body, which for our systems is between the mass of a **small moon** and **dwarf planet** 

# Conclusions

- I have studied two **cool**, **He-atmosphere** white dwarfs accreting planetary debris.
- The He atmospheres mean the debris takes **more time to sink**, and therefore the choice of disc model is significant.
- I found that the **exponentially decaying disc model** provides **better matches** to the accretion scenario and planet composition for the two white dwarfs.
- The two systems considered in this work were found to be accreting bulk **Earth**-like parent bodies at least the mass of a **small moon**.

#### Extra slides 3.8 3.5 $10^{1}$ 3.2 3.0 $\chi^2_{red}$ $10^{0}$ 2.5 2.2 2.0 $10^{-1}$ 71.8 10-2 $10^{-1}$ $10^{0}$ $10^{1}$

Disc lifetime (Myr)

Time elapsed since accretion began (Myr)

#### Mesosiderite solution for WDJ 2141-3300

# Extra slides



Ratioed relative to Ca rather than Mg (WDJ 2141-3300)

# Extra slides

$$M_{\rm PB}(Z, t_{\rm elapse}) = \frac{M_{\rm CVZ}(Z)(t_{\rm disc} - t_{\rm set}(Z))}{t_{\rm set}(Z)(e^{-t_{\rm elapse}/t_{\rm disc}} - e^{-t_{\rm elapse}/t_{\rm set}(Z)})}$$

$$\chi_{\nu}^{2} = \frac{1}{\nu} \sum_{i=1}^{N} \left( \frac{\left(Y_{i,\text{WD}} - Y_{i,\text{SS}}\right)^{2}}{\sigma_{\text{WD}}^{2}(Z_{i}) + \sigma_{\text{WD}}^{2}(Z_{\text{ref}})} + \frac{1 - S(Y_{i,\text{WD}})}{\sigma_{i}} \right)$$

 $Y_i = \log\left(n(Z_i)/n(Z_{\text{ref}})\right)$