Intracluster Light as a Probe for Dark Matter: Exploring SIDM and CDM with C-EAGLE Sim

Self-Interacting Dark Matter

Jaewon Yoo

Self-Interacting Dark Matter (SIDM)

- Resolve tensions between simulations and observations on small scales.
- C-EAGLE simulation CDM/SIDM cluster with the same initial condition
- Cross Section

$$\sigma/m = 1cm^2g^{-1} \qquad P_{scat} = \frac{(\sigma/m)m_{DM}\nu\Delta t}{\frac{4\pi}{3}h_{SI}^3}$$

- ➤ DM scattered → Additional tidal stripping!
- > Different tidal interaction history (~30% different)
 - → <u>Different ICL formation?</u>

Galaxy Cluster Components

Jaewon Yoo

Jaewon Yoo

Comparison of Spatial Distribution

> Can you tell how similar those maps are, in a number?

WOC method

Give Weight to the Overlapping Area

Weighted Overlap Coefficient

$$WOC(A, B) = \frac{\sum_{i=1}^{n} f_i \left(w_i + w_{\rho_A, i} + w_{\rho_B, i} \right)}{\sum_{i=1}^{n} \left(w_i + w_{\rho_A, i} + w_{\rho_B, i} \right)},$$

$$f_i = \operatorname{area}(A_i \cap B_i) / \operatorname{area}(A_i)$$

Yoo et al. 2022, ApJS, 261, 28

- Give number between 0 and 1
- > If you want to quantify the similarity of spatial distributions..
- ✓ The WOC method code is available for public use! https://github.com/csabiu/WOC pip install pywoc

WOC Result (CDM vs. SIDM)

BCG+ICL > Gas > All Stars > Galaxies

BCG+ICL trace DM from high-z
Gas improves & catches up

Cf) WOC Evolution in HR5

WOC Result (CDM vs. SIDM)

Jaewon Yoo

WOC Result (CDM vs. SIDM)

WOC(CDM) vs. WOC(SIDM)

Summary

- (1) Except high-z regime, DM is traced in the following order of accuracy: **BCG+ICL> gas> all stars> galaxies**.
- (2) The DM-tracing performance improves over time for BCG+ICL and gas.
- (3) For CE12 (the more relaxed case), **BCG+ICL consistently performs well, even at high-z**.

Gas performs poorly at high-z but improves over time and eventually becomes comparable to BCG+ICL.

(4) In the SIDM case, gas distribution resembles DM more closely compared to CDM.

In CDM, DM is collisionless and more similar to BCG+ICL,

whereas in SIDM, DM has slight viscosity and behaves like a gas

Future Work

If we <u>simulate</u> more CDM/ SIDM relaxed/ unrelaxed galaxy clusters and confirm this result,

And observe galaxy clusters measuring WOC (DM, Gas) and WOC (DM, BCG+ICL),

If in relaxed galaxy clusters at z=0,

WOC (DM, Gas) > WOC (DM, BCG+ICL)

Our universe is SIDM

WOC (DM, Gas) < WOC (DM, BCG+ICL) Our universe is CDM

or $\sigma/m < 1cm^2g^{-1}$

Jaewon Yoo • ICL • Galaxy Cluster

Yoo et al. 2021, MNRAS, 508, 2

Yoo et al. 2022, ApJS, 261, 28

Yoo et al. 2024, ApJ, 965, 145

Yoo et al. 2025, ApJ, in press (arXiv:2506.16280)

jwyoo@kias.re.kr